dears R-users, I'm interested in model selection problem, and i have faced some problems that i would like to ask for help.
well, this is a very small example with 4 variable (just one var. is the response - z) with 100 individuals i would like to do a stepwise search, for the "best" model, and a use BIC criteria. I know when I have a lot of variables, let's say 120, I know, it's not wise, consider the full model, so starting from "y~1", i can stop the search with the option steps. but when i have the IC with a negative value, is there any way that a can stop the search? for example: form this data set the first step gives AIC=3.6, and the 2nd gives -9.03, IS THERE ANY WAY that a could say, "stop here, the previous one is the best for me"... like here, my model would be with no variable. I know that example, looks like silly but a have bigger data, that this happens in thirtieth iteration, what's why i would like some help i used the step(), is there other function that could stop this besides step()? cheers, Rodrigo Gazaffi x1 <- c( 0.3718, 0.3718, 0.3718, 0.3718, 0.3718, 0.3718, 0.3718, 0.3718, -1.0000, 0.3718, 0.3718, 0.3718, 0.3718, 0.3718, 0.3718, 0.3718, 0.3718, 0.3718, 0.3718, 0.3718, 0.3718, 0.3718, 0.0713, 0.1774, 0.3570, 0.3718, 0.3718, 0.3718, -1.0000, 0.3718, -1.0000, 0.1774, 0.3718, 0.3718, 0.0709, 0.1774, -1.0000, -1.0000, 0.3718, 0.3718, 0.0713, 0.0709, 0.3718, 0.3718, 0.3718, 0.3718, 0.2614, 0.2614, -0.9995, -1.0000, 0.1774, 0.3718, -1.0000, -1.0000, 0.1774, 0.3718, 0.1774, 0.3718, 0.3718, -1.0000, 0.3718, 0.3718, 0.3718, 0.3718, 0.3718, -1.0000, 0.3718, 0.3718, 0.3718, 0.3718, 0.0709, 0.0710, 0.3718, 0.3718, 0.3718, 0.3718, 0.3718, 0.0709, 0.3718, 0.0709, 0.0709, 0.3718, 0.0709, 0.3570, 0.3718, 0.3718, 0.3718, 0.0709, 0.3718, 0.3718, 0.3718, -1.0000, 0.3718, 0.3718, 0.3718, -1.0000, 0.3718, 0.3718, 0.3718, 0.3718) x2 <- c( 0.3898, -0.9995, 0.3898, 0.3898, 0.3898, 0.1978, 0.3898, -0.9997, -1.0000, -1.0000, 0.3898, 0.3898, 0.3898, 0.3898, -1.0000, 0.1978, -1.0000, 0.3898, 0.3898, -1.0000, 0.1978, 0.3898, 0.3898, 0.3898, 0.1978, -0.9995, 0.3792, -1.0000, -1.0000, 0.3898, 0.0837, 0.0837, 0.0837, 0.3898, 0.0837, 0.3898, 0.3898, 0.0837, 0.3898, 0.0837, 0.0837, -1.0000, -1.0000, 0.3898, 0.0841, 0.1976, -1.0000, 0.2467, 0.1978, 0.3842, 0.3898, 0.3848, 0.2766, 0.3898, 0.3898, 0.3898, -1.0000, -0.9995, 0.3898, 0.3898, 0.0837, 0.3898, -1.0000, 0.1978, 0.3898, 0.2766, 0.3898, 0.3898, 0.3898, 0.2766, 0.3898, 0.3866, 0.1978, 0.3898, -1.0000, -1.0000, 0.3898, 0.3898, 0.3898, 0.3898, 0.3898, 0.1978, 0.0841, -1.0000, 0.0837, 0.3898, 0.3898, -1.0000, 0.3898, 0.3898, -1.0000, 0.3898, 0.3898, 0.0837, 0.3898, 0.3898, 0.1976, 0.3898, 0.3898, 0.3898) x3 <- c( 0.9999, 0.9999, 0.9999, 1.0000, -0.9999, 0.9999, -0.9999, 0.9999, -0.9999, -1.0000, -1.0000, -0.9999, -0.9980, -0.9999, -0.9999, -1.0000, -0.9999, -0.9999, -0.9999, 1.0000, -1.0000, 1.0000, -1.0000, -1.0000, -1.0000, -0.9980, 1.0000, -0.9999, -1.0000, -1.0000, -0.9999, -0.9999, 0.9999, 1.0000, -0.9999, -1.0000, 1.0000, 0.9999, 1.0000, -0.9999, 0.9999, -1.0000, -1.0000, -0.9999, 0.8356, 0.8356, -0.3241, 0.8356, 0.8353, 0.8356, 1.0000, -1.0000, -1.0000, -1.0000, -1.0000, -1.0000, -0.9999, 0.9999, 1.0000, -0.9980, 0.9999, 1.0000, -1.0000, 1.0000, -0.9999, 1.0000, 0.9999, -1.0000, 1.0000, -1.0000, 0.9999, 0.9999, -1.0000, -1.0000, 1.0000, -1.0000, -1.0000, 1.0000, 1.0000, 1.0000, -0.9999, 1.0000, -1.0000, 1.0000, -1.0000, 1.0000, -1.0000, 1.0000, 1.0000, 1.0000, -1.0000, -0.9999, -0.8547, -1.0000, -0.7851, 0.8356, -1.0000, -0.9999, -0.9999, 1.0000) z <- c( -0.006548414, -1.035584950, -0.006548414, 0.180549138, 0.741841793, 1.770878329, -0.848487398, -1.035584950, -2.251719037, 0.461195465, 2.051524656, 1.116036897, -0.193645966, 0.274097913, 0.180549138, 0.274097913, 0.274097913, 0.835390569, 0.928939345, -1.316231277, 0.087000362, 0.741841793, 1.116036897, 0.180549138, -0.193645966, 0.274097913, 0.274097913, 1.490232001, -1.222682502, 1.303134449, 0.367646689, -0.100097190, -0.006548414, -1.035584950, 1.490232001, 0.648293017, -2.064621485, -2.625914141, 1.022488121, -0.006548414, -1.222682502, -0.567841070, -0.942036174, 0.461195465, 1.770878329, 0.461195465, -1.503328829, -1.035584950, -0.848487398, -0.567841070, 1.396683225, 2.051524656, -0.942036174, -0.754938622, -1.596877605, 0.648293017, -0.287194742, -0.567841070, 0.461195465, -0.474292294, -0.100097190, 0.287194742, 0.554744241, -0.006548414, 1.209585673, -1.409780053, 0.928939345, 0.928939345, -0.006548414, 1.396683225, -0.380743518, 0.928939345, 1.490232001, 1.770878329, -1.129133726, -0.848487398, -0.380743518, 0.274097913, -1.409780053, -0.100097190, 0.367646689, -0.474292294, 0.554744241, -2.251719037, 0.087000362, -0.848487398, 0.741841793, -2.064621485, -0.006548414, 0.461195465, -0.100097190, -0.006548414, 0.648293017, -0.287194742, 0.928939345, -0.193645966, -0.474292294, -0.006548414, -1.035584950, 0.461195465) step(lm(z ~1),scope=list(lower=~1,upper=~x1+x2+x3),direction="both",k=log(length(z))) ######### Start: AIC=3.6 z ~ 1 Df Sum of Sq RSS AIC + x1 1 15.671 83.329 -9.028 + x2 1 12.390 86.610 -5.165 + x3 1 7.403 91.597 0.433 <none> 99.000 3.600 Step: AIC=-9.03 z ~ x1 Df Sum of Sq RSS AIC + x2 1 13.675 69.654 -22.348 + x3 1 7.078 76.251 -13.299 <none> 83.329 -9.028 - x1 1 15.671 99.000 3.600 Step: AIC=-22.35 z ~ x1 + x2 Df Sum of Sq RSS AIC + x3 1 8.930 60.723 -31.463 <none> 69.654 -22.348 - x2 1 13.675 83.329 -9.028 - x1 1 16.956 86.610 -5.165 Step: AIC=-31.46 z ~ x1 + x2 + x3 Df Sum of Sq RSS AIC <none> 60.723 -31.463 - x3 1 8.930 69.654 -22.348 - x2 1 15.527 76.251 -13.299 - x1 1 16.669 77.392 -11.813 Call: lm(formula = z ~ x1 + x2 + x3) Coefficients: (Intercept) x1 x2 x3 -0.2015 0.9000 0.7269 -0.3083 [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.