Dear R users,

Suppose I want to look at three different types of contrasts after fitting a 
linear model:

P1=contr.treatment(7)
P2=contr.helmert(7)
P3=contr.sdif(7) #from library(MASS)

contrasts(A)=P1
model1=aov(y~A)
summary(model1)

contrasts(A)=P2
model2=aov(y~A)
summary(model2)

contrasts(A)=P3
model3=aov(y~A)
summary(model3)

How do I have to adjust the P values for the number of comparisons made? In each case, all comparisons made are orthogonal, but because I use three contrast matrices, I thought I would need to work at alpha=0.05/3 or so. Any ideas?

Thanks and best wishes
Christoph


(using R 2.7.1 on Windows XP)







--
Dr. rer.nat. Christoph Scherber
University of Goettingen
DNPW, Agroecology
Waldweg 26
D-37073 Goettingen
Germany

phone +49 (0)551 39 8807
fax   +49 (0)551 39 8806

Homepage http://www.gwdg.de/~cscherb1

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to