Dear R-experts, Here below a toy example with some error messages, especially at the end of the code (Tuning the parameters). Your help to correct my R code would be highly appreciated.
####################################### #libraries library(lattice) library(ggplot2) library(caret) library(randomForest) #Data y=c(23,34,32,12,24,35,45,56,76,87,54,34,23,45,41,13,16,98,35,65,56,67,78,89,87,64,53,31,14,34,45,46,57,69,90,80,70,65,50,45,60,56,87,79,64,34,25,47,61,24,10,13,12,15,46,58,76,89,90,98) x1=c(4,5,6,7,1,10,19,20,21,14,23,6,5,32,15,12,16,14,2,3,4,5,3,2,1,2,6,7,5,4,3,2,1,3,4,6,7,9,5,4,3,7,10,11,12,13,10,3,2,5,6,9,8,7,4,12,15,16,2,3) x2=c(0,0,0,1,1,0,1,1,0,1,1,0,0,1,0,0,0,0,0,1,1,1,1,1,0,0,0,1,0,0,1,0,0,0,1,1,0,1,0,0,0,1,1,1,1,0,1,0,1,0,0,1,1,0,0,1,0,0,1,1) y=as.numeric(y) x1=as.numeric(x1) x2=as.factor(x2) X=data.frame(x1,x2) y=y #Split data into training and test sets index=createDataPartition(y, p=0.75, list=FALSE) X_train = X[index, ] X_test = X[-index, ] y_train= y[index ] y_test = y[-index ] #Train de model regr=randomForest (x=X_train, y=y_train, maxnodes=10, ntree=10) regr<-randomForest(y~x1+x2, data=X_train, proximity=TRUE) regr #Make prediction predictions= predict(regr, X_test) result= X_test result['y'] = y_test result['prediction'] = predictions result # Import library for Metrics library(Metrics) print(paste0('MAE: ' , mae(y_test,predictions) )) print(paste0('MSE: ' ,caret::postResample(predictions , y_test)['RMSE']^2 )) print(paste0('R2: ' ,caret::postResample(predictions , y_test)['Rsquared'] )) #Tuning the parameters N=500 #length(X_train) X_train_ = X_train[1:N , ] y_train_ = y_train[1:N] seed <-7 metric<-'RMSE' customRF <- list(type = "Regression", library = "randomForest", loop = NULL) customRF$parameters <- data.frame(parameter = c("maxnodes", "ntree"), class = rep("numeric", 2), label = c("maxnodes", "ntree")) customRF$grid <- function(x, y, len = NULL, search = "grid") {} customRF$fit <- function(x, y, wts, param, lev, last, weights, classProbs, ...) { randomForest(x, y, maxnodes = param$maxnodes, ntree=param$ntree, ...) } customRF$predict <- function(modelFit, newdata, preProc = NULL, submodels = NULL) predict(modelFit, newdata) customRF$prob <- function(modelFit, newdata, preProc = NULL, submodels = NULL) predict(modelFit, newdata, type = "prob") customRF$sort <- function(x) x[order(x[,1]),] customRF$levels <- function(x) x$classes # Set grid search parameters control <- trainControl(method="repeatedcv", number=10, repeats=3, search='grid') # Outline the grid of parameters tunegrid <- expand.grid(.maxnodes=c(10,20,30,50), .ntree=c(100, 200, 300)) set.seed(seed) # Train the model rf_gridsearch <- train(x=X_train_, y=y_train_, method=customRF, metric=metric, tuneGrid=tunegrid, trControl=control) plot(rf_gridsearch) rf_gridsearch$bestTune ################################################# ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.