THanks Michael for this.This is much appreciated. So, how can I estimate the sensitivity and specificity after having the prediction on testing data. Any thoughts?
Kind regards, Greg On Mon, Oct 24, 2022 at 12:10 PM Michael Dewey <li...@dewey.myzen.co.uk> wrote: > So predict is a one-dimensional vector of predictions but you are > treating it as a two-dimensional matrix (presumably you think those are > the totals). > > Michael > > On 24/10/2022 16:50, greg holly wrote: > > Hi Michael, > > > > I appreciate your writing. Here are what I have after; > > > > > predict_testing <- ifelse(predict > 0.5,1,0) > > > > > > head(predict) > > 1 2 3 5 7 8 > > 0.29006984 0.28370507 0.10761993 0.02204224 0.12873872 0.08127920 > > > > > > # Sensitivity and Specificity > > > > > > > > > sensitivity<-(predict_testing[2,2]/(predict_testing[2,2]+predict_testing[2,1]))*100 > > Error in predict_testing[2, 2] : incorrect number of dimensions > > > sensitivity > > function (data, ...) > > { > > UseMethod("sensitivity") > > } > > <bytecode: 0x000002082a2f01d8> > > <environment: namespace:caret> > > > > > > > > > specificity<-(predict_testing[1,1]/(predict_testing[1,1]+predict_testing[1,2]))*100 > > Error in predict_testing[1, 1] : incorrect number of dimensions > > > specificity > > function (data, ...) > > { > > UseMethod("specificity") > > } > > <bytecode: 0x000002082a2fa600> > > <environment: namespace:caret> > > > > On Mon, Oct 24, 2022 at 10:45 AM Michael Dewey <li...@dewey.myzen.co.uk > > <mailto:li...@dewey.myzen.co.uk>> wrote: > > > > Rather hard to know without seeing what output you expected and what > > error message you got if any but did you mean to summarise your > > variable > > predict before doing anything with it? > > > > Michael > > > > On 24/10/2022 16:17, greg holly wrote: > > > Hi all R-Help , > > > > > > After partitioning my data to testing and training (please see > > below), I > > > need to estimate the Sensitivity and Specificity. I failed. It > > would be > > > appropriate to get your help. > > > > > > Best regards, > > > Greg > > > > > > > > > inTrain <- createDataPartition(y=data$case, > > > p=0.7, > > > list=FALSE) > > > training <- data[ inTrain,] > > > testing <- data[-inTrain,] > > > > > > attach(training) > > > #model training and prediction > > > data_training <- glm(case ~ age+BMI+Calcium+Albumin+meno_1, data = > > > training, family = binomial(link="logit")) > > > > > > predict <- predict(data_training, data_predict = testing, type = > > "response") > > > > > > predict_testing <- ifelse(predict > 0.5,1,0) > > > > > > # Sensitivity and Specificity > > > > > > > > > > sensitivity<-(predict_testing[2,2]/(predict_testing[2,2]+predict_testing[2,1]))*100 > > > sensitivity > > > > > > > > > > specificity<-(predict_testing[1,1]/(predict_testing[1,1]+predict_testing[1,2]))*100 > > > specificity > > > > > > [[alternative HTML version deleted]] > > > > > > ______________________________________________ > > > R-help@r-project.org <mailto:R-help@r-project.org> mailing list > > -- To UNSUBSCRIBE and more, see > > > https://stat.ethz.ch/mailman/listinfo/r-help > > <https://stat.ethz.ch/mailman/listinfo/r-help> > > > PLEASE do read the posting guide > > http://www.R-project.org/posting-guide.html > > <http://www.R-project.org/posting-guide.html> > > > and provide commented, minimal, self-contained, reproducible code. > > > > > > > -- > > Michael > > http://www.dewey.myzen.co.uk/home.html > > <http://www.dewey.myzen.co.uk/home.html> > > > > > > < > http://www.avg.com/email-signature?utm_medium=email&utm_source=link&utm_campaign=sig-email&utm_content=emailclient> > Virus-free.www.avg.com < > http://www.avg.com/email-signature?utm_medium=email&utm_source=link&utm_campaign=sig-email&utm_content=emailclient > > > > > > <#DAB4FAD8-2DD7-40BB-A1B8-4E2AA1F9FDF2> > > -- > Michael > http://www.dewey.myzen.co.uk/home.html > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.