Hello, I have two peaks distributions (and some noise values in between), and I used mixtools to characterize the two overlapping data. How can I find the minimum between the peak distributions? The sigma value of the second population is close to that value, but I am not sure if this is really the cut-off point between the two distributions (by eye, I would say the value is 0.125 against 0.1 of the sigma value). Is there a better approach? Thanks
``` set.seed(10) negative_mr <- runif(50, 0, 0.099) negative_fcn <- runif(50, 1, 40) positive_mr <- c(runif(30, 0.2, 0.5), runif(20, 0.4, 0.5)) positive_fcn <- c(runif(30, 25, 40), runif(20, 10, 25)) uncertain_mr <- runif(10, 0.099, 0.2) uncertain_fcn <- runif(10, 2, 40) df <- data.frame(Y=c(negative_mr, uncertain_mr, positive_mr), X=c(negative_fcn, uncertain_fcn, positive_fcn), GROUP=c(rep("negative", length(negative_mr)), rep("uncertain", length(uncertain_mr)), rep("positive", length(positive_mr)))) library(mixtools) model = normalmixEM((x = df$Y)) summary(model) # plot plot(model, which=2) Cut_off <- model$sigma[2] Cut_offE <- 0.125 abline(v=Cut_off, col="blue", lwd=2) abline(v=Cut_offE, col="blue", lwd=2, lty=2) plot(df$Y[df$GROUP=="negative"]~df$X[df$GROUP=="negative"], pch=1, ylim=c(0,0.5), xlim=c(0,41), cex=1.5, xlab=expression(bold("X")), ylab=expression(bold("Y"))) points(df$Y[df$GROUP=="positive"]~df$X[df$GROUP=="positive"], pch=16, cex=1.5) points(df$Y[df$GROUP=="uncertain"]~df$X[df$GROUP=="uncertain"], pch=16, cex=1.5, col="grey") abline(h=Cut_off, col="blue", lwd=2) abline(h=Cut_offE, col="blue", lwd=2, lty=2) ``` -- Best regards, Luigi ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.