On 3/5/21 1:14 AM, PIKAL Petr wrote:
Dear all

I have table of quantiles, probably from lognormal distribution

  dput(temp)
temp <- structure(list(size = c(1.6, 0.9466, 0.8062, 0.6477, 0.5069,
0.3781, 0.3047, 0.2681, 0.1907), percent = c(0.01, 0.05, 0.1,
0.25, 0.5, 0.75, 0.9, 0.95, 0.99)), .Names = c("size", "percent"
), row.names = c(NA, -9L), class = "data.frame")

and I need to calculate quantile for size 0.1

plot(temp$size, temp$percent, pch=19, xlim=c(0,2))
ss <- approxfun(temp$size, temp$percent)
points((0:100)/50, ss((0:100)/50))
abline(v=.1)

If I had original data it would be quite easy with ecdf/quantile function but 
without it I am lost what function I could use for such task.

The quantiles are in reverse order so tryoing to match the data to quantiles from candidate parameters requires subtracting them from unity:

> temp$size
[1] 1.6000 0.9466 0.8062 0.6477 0.5069 0.3781 0.3047 0.2681 0.1907
> qlnorm(1-temp$percent, -.5)
[1] 6.21116124 3.14198142 2.18485959 1.19063854 0.60653066 0.30897659 0.16837670 0.11708517 0.05922877
> qlnorm(1-temp$percent, -.9)
[1] 4.16346589 2.10613313 1.46455518 0.79810888 0.40656966 0.20711321 0.11286628 0.07848454 0.03970223
> qlnorm(1-temp$percent, -2)
[1] 1.38589740 0.70107082 0.48750807 0.26566737 0.13533528 0.06894200 0.03756992 0.02612523 0.01321572
> qlnorm(1-temp$percent, -1.6)
[1] 2.06751597 1.04587476 0.72727658 0.39632914 0.20189652 0.10284937 0.05604773 0.03897427 0.01971554
> qlnorm(1-temp$percent, -1.6, .5)
[1] 0.64608380 0.45951983 0.38319004 0.28287360 0.20189652 0.14410042 0.10637595 0.08870608 0.06309120
> qlnorm(1-temp$percent, -1, .5)
[1] 1.1772414 0.8372997 0.6982178 0.5154293 0.3678794 0.2625681 0.1938296 0.1616330 0.1149597
> qlnorm(1-temp$percent, -1, .4)
[1] 0.9328967 0.7103066 0.6142340 0.4818106 0.3678794 0.2808889 0.2203318 0.1905308 0.1450700
> qlnorm(1-temp$percent, -0.5, .4)
[1] 1.5380866 1.1710976 1.0127006 0.7943715 0.6065307 0.4631076 0.3632657 0.3141322 0.2391799
> qlnorm(1-temp$percent, -0.55, .4)
[1] 1.4630732 1.1139825 0.9633106 0.7556295 0.5769498 0.4405216 0.3455491 0.2988118 0.2275150
> qlnorm(1-temp$percent, -0.55, .35)
[1] 1.3024170 1.0260318 0.9035201 0.7305712 0.5769498 0.4556313 0.3684158 0.3244257 0.2555795
> qlnorm(1-temp$percent, -0.55, .45)
[1] 1.6435467 1.2094723 1.0270578 0.7815473 0.5769498 0.4259129 0.3241016 0.2752201 0.2025322
> qlnorm(1-temp$percent, -0.53, .45)
[1] 1.6767486 1.2339052 1.0478057 0.7973356 0.5886050 0.4345169 0.3306489 0.2807799 0.2066236
> qlnorm(1-temp$percent, -0.57, .45)
[1] 1.6110023 1.1855231 1.0067207 0.7660716 0.5655254 0.4174793 0.3176840 0.2697704 0.1985218

Seems like it might be an acceptable fit. modulo the underlying data gathering situation which really should be considered.

You can fiddle with that result. My statistical hat (not of PhD level certification) says that the middle quantiles in this sequence probably have the lowest sampling error for a lognormal, but I'm rather unsure about that. A counter-argument might be that since there is a hard lower bound of 0 for the 0-th quantile that you should be more worried about matching the 0.1907 value to the 0.01 order statistic, since 99% of the data is know to be above it. Seems like efforts at matching the 0.50 quantile to 0.5069 for the logmean parameter and matching the 0.01 quantile 0.1907 for estimation of  the variance estimate might be preferred to worrying too much about the 1.6 value which would be in the right tail (and far away from your region of extrapolation.)


Further trial and error:


> qlnorm(1-temp$percent, -0.58, .47)
[1] 1.6709353 1.2129813 1.0225804 0.7687497 0.5598984 0.4077870 0.3065638 0.2584427 0.1876112
> qlnorm(1-temp$percent, -0.65, .47)
[1] 1.5579697 1.1309763 0.9534476 0.7167775 0.5220458 0.3802181 0.2858382 0.2409704 0.1749275
> qlnorm(1-temp$percent, -0.65, .5)
[1] 1.6705851 1.1881849 0.9908182 0.7314290 0.5220458 0.3726018 0.2750573 0.2293682 0.1631355
> qlnorm(1-temp$percent, -0.65, .4)
[1] 1.3238434 1.0079731 0.8716395 0.6837218 0.5220458 0.3986004 0.3126657 0.2703761 0.2058641
> qlnorm(1-temp$percent, -0.68, .4)
[1] 1.2847179 0.9781830 0.8458786 0.6635148 0.5066170 0.3868200 0.3034251 0.2623852 0.1997799
> qlnorm(1-temp$percent, -0.65, .39)
[1] 1.2934016 0.9915290 0.8605402 0.6791257 0.5220458 0.4012980 0.3166985 0.2748601 0.2107093
>
> qlnorm(1-temp$percent, -0.65, .42)
[1] 1.3868932 1.0416839 0.8942693 0.6930076 0.5220458 0.3932595 0.3047536 0.2616262 0.1965053
> qlnorm(1-temp$percent, -0.68, .42)
[1] 1.3459043 1.0108975 0.8678396 0.6725261 0.5066170 0.3816369 0.2957468 0.2538940 0.1906976


(I did make an effort at searching for quantile matching as a method for distribution fitting, but came up empty.)


--

David.


Please, give me some hint where to look.


Best regards

Petr
>[[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to