Dear R-helpers,

Using the HBR (high breakdown rank-based) robust estimator and the hbrfit 
function, I get an error saying Error in UseMethod("predict") for hbrfit. How 
can I solve the problem ? Many thanks for your help.

# # # # # # # # # # # # # # # # # # # # # # # #
install.packages( "robustbase",dependencies=TRUE )
install.packages( "boot",dependencies=TRUE )
install.packages( "MASS",dependencies=TRUE  )
install.packages( "quantreg",dependencies=TRUE  )
install.packages( "RobPer",dependencies=TRUE  )
install_github("kloke/hbrfit") 
install.packages('http://www.stat.wmich.edu/mckean/Stat666/Pkgs/npsmReg2_0.1.1.tar.gz')
 
install.packages( "RobStatTM",dependencies=TRUE )

library(boot)
library(robustbase)
library(MASS)
library(quantreg)
library(RobPer)
library(hbrfit)
library(RobStatTM)

n<-200
b<-runif(n, 0, 5)
z <- rnorm(n, 2, 3)
a <- runif(n, 0, 5)

y_model<- 0.1*b - 0.5 * z - a + 10
y_obs <- y_model +c( rnorm(n*0.9, 0, 0.1), rnorm(n*0.1, 0, 0.5) )
df<-data.frame(b,z,a,y_obs)

 # function to obtain MSE
 MSE <- function(data, indices, formula){
    d <- data[indices, ] # allows boot to select sample
    fit <- hbrfit(formula, data = d)
    ypred <- predict(fit)

   mean((d[["y_obs"]]-ypred)^2)
 }

 # Make the results reproducible
 set.seed(1234)
 
# bootstrapping with 600 replications
results <- boot(data = df, statistic = MSE,
R = 600, formula = y_obs ~ b+z+a)
str(results)

boot.ci(results, type="bca" )
# # # # # # # # # # # # # # # # # # # # # # # # #

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to