Dear R-helpers, Using the HBR (high breakdown rank-based) robust estimator and the hbrfit function, I get an error saying Error in UseMethod("predict") for hbrfit. How can I solve the problem ? Many thanks for your help.
# # # # # # # # # # # # # # # # # # # # # # # # install.packages( "robustbase",dependencies=TRUE ) install.packages( "boot",dependencies=TRUE ) install.packages( "MASS",dependencies=TRUE ) install.packages( "quantreg",dependencies=TRUE ) install.packages( "RobPer",dependencies=TRUE ) install_github("kloke/hbrfit") install.packages('http://www.stat.wmich.edu/mckean/Stat666/Pkgs/npsmReg2_0.1.1.tar.gz') install.packages( "RobStatTM",dependencies=TRUE ) library(boot) library(robustbase) library(MASS) library(quantreg) library(RobPer) library(hbrfit) library(RobStatTM) n<-200 b<-runif(n, 0, 5) z <- rnorm(n, 2, 3) a <- runif(n, 0, 5) y_model<- 0.1*b - 0.5 * z - a + 10 y_obs <- y_model +c( rnorm(n*0.9, 0, 0.1), rnorm(n*0.1, 0, 0.5) ) df<-data.frame(b,z,a,y_obs) # function to obtain MSE MSE <- function(data, indices, formula){ d <- data[indices, ] # allows boot to select sample fit <- hbrfit(formula, data = d) ypred <- predict(fit) mean((d[["y_obs"]]-ypred)^2) } # Make the results reproducible set.seed(1234) # bootstrapping with 600 replications results <- boot(data = df, statistic = MSE, R = 600, formula = y_obs ~ b+z+a) str(results) boot.ci(results, type="bca" ) # # # # # # # # # # # # # # # # # # # # # # # # # ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.