Hello, I have a matrix > dim(dat) [1] 15568 132
It looks like this: NoD_14381_norm.1 NoD_14381_norm.2 NoD_14381_norm.3 NoD_14520_30mM.1 NoD_14520_30mM.2 NoD_14520_30mM.3 Ku8QhfS0n_hIOABXuE 4.75 4.25 4.79 4.33 4.63 3.85 Bx496XsFXiAlj.Eaeo 6.15 6.23 6.55 6.26 6.24 5.99 W38p0ogk.wIBVRXllY 7.13 7.35 7.55 7.37 7.36 7.55 QIBkqIS9LR5DfTlTS8 6.27 6.73 6.45 5.39 4.75 4.96 BZKiEvS0eQ305U0v34 6.35 7.02 6.76 5.45 5.25 5.02 6TheVd.HiE1UF3lX6g 5.53 5.02 5.36 5.61 5.66 5.37 So it is a matrix with gene names ex. Ku8QhfS0n_hIOABXuE, and subjects named ex. NoD_14381_norm.1 How to do 1000 permutations of these 132 columns and on each created new permuted matrix perform this code: subject="all_replicate" targets<-readTargets(paste(PhenotypeDir,"hg_sg_",subject,"_target.txt", sep='')) Treat <- factor(targets$Treatment,levels=c("C","T")) Replicates <- factor(targets$rep) design <- model.matrix(~Replicates+Treat) corfit <- duplicateCorrelation(dat, block = targets$Subject) corfit$consensus.correlation fit <-lmFit(dat,design,block=targets$Subject,correlation=corfit$consensus.correlation) fit<-eBayes(fit) qval.cutoff=0.1; FC.cutoff=0.17 y1=topTable(fit, coef="TreatT", n=nrow(genes),adjust.method="BH",genelist=genes) y1 for each iteration of permutation would have P.Value column and these I would have plotted on the end to find the distribution of all p values generated in those 1000 permutations. Please advise, Ana ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.