Hello,

I have a matrix
> dim(dat)
[1] 15568   132

It looks like this:

                   NoD_14381_norm.1 NoD_14381_norm.2 NoD_14381_norm.3
NoD_14520_30mM.1 NoD_14520_30mM.2 NoD_14520_30mM.3
Ku8QhfS0n_hIOABXuE             4.75             4.25             4.79
           4.33             4.63             3.85
Bx496XsFXiAlj.Eaeo             6.15             6.23             6.55
           6.26             6.24             5.99
W38p0ogk.wIBVRXllY             7.13             7.35             7.55
           7.37             7.36             7.55
QIBkqIS9LR5DfTlTS8             6.27             6.73             6.45
           5.39             4.75             4.96
BZKiEvS0eQ305U0v34             6.35             7.02             6.76
           5.45             5.25             5.02
6TheVd.HiE1UF3lX6g             5.53             5.02             5.36
           5.61             5.66             5.37

So it is a matrix with gene names ex. Ku8QhfS0n_hIOABXuE, and subjects
named ex. NoD_14381_norm.1


How to do 1000 permutations of these 132 columns and on each created
new permuted matrix perform this code:

subject="all_replicate"
targets<-readTargets(paste(PhenotypeDir,"hg_sg_",subject,"_target.txt", sep=''))
Treat <- factor(targets$Treatment,levels=c("C","T"))
Replicates <- factor(targets$rep)
design <- model.matrix(~Replicates+Treat)
corfit <- duplicateCorrelation(dat, block = targets$Subject)
corfit$consensus.correlation
fit 
<-lmFit(dat,design,block=targets$Subject,correlation=corfit$consensus.correlation)
fit<-eBayes(fit)
qval.cutoff=0.1; FC.cutoff=0.17
y1=topTable(fit, coef="TreatT", n=nrow(genes),adjust.method="BH",genelist=genes)

y1 for each iteration of permutation would  have P.Value column and
these I would have plotted on the end to find the distribution of all
p values generated in those 1000 permutations.

Please advise,
Ana

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to