would you know how would I extract from my original data frame, just these unique rows? because this gives me only those 3 columns, and I want all columns from the original data frame
> head(udt) chr pos gene_id 1 chr1 54490 ENSG00000227232 2 chr1 58814 ENSG00000227232 3 chr1 60351 ENSG00000227232 4 chr1 61920 ENSG00000227232 5 chr1 63671 ENSG00000227232 6 chr1 64931 ENSG00000227232 > head(dt) chr pos gene_id pval_nominal pval_ret wl wr META 1: chr1 54490 ENSG00000227232 0.608495 0.783778 31.62278 21.2838 0.7475480 2: chr1 58814 ENSG00000227232 0.295211 0.897582 31.62278 21.2838 0.6031214 3: chr1 60351 ENSG00000227232 0.439788 0.867959 31.62278 21.2838 0.6907182 4: chr1 61920 ENSG00000227232 0.319528 0.601809 31.62278 21.2838 0.4032200 5: chr1 63671 ENSG00000227232 0.237739 0.988039 31.62278 21.2838 0.7482519 6: chr1 64931 ENSG00000227232 0.276679 0.907037 31.62278 21.2838 0.5974800 On Fri, Nov 8, 2019 at 9:30 AM Ana Marija <sokovic.anamar...@gmail.com> wrote: > > Thank you so much! Converting it to data frame resolved the issue! > > On Fri, Nov 8, 2019 at 9:19 AM Gerrit Eichner > <gerrit.eich...@math.uni-giessen.de> wrote: > > > > It seems as if dt is not a (base R) data frame but a > > data table. I assume, you will have to transform dt > > into a data frame (maybe with as.data.frame) to be > > able to apply unique in the suggested way. However, > > I am not familiar with data tables. Perhaps somebody > > else can provide a more profound guess. > > > > Regards -- Gerrit > > > > --------------------------------------------------------------------- > > Dr. Gerrit Eichner Mathematical Institute, Room 212 > > gerrit.eich...@math.uni-giessen.de Justus-Liebig-University Giessen > > Tel: +49-(0)641-99-32104 Arndtstr. 2, 35392 Giessen, Germany > > http://www.uni-giessen.de/eichner > > --------------------------------------------------------------------- > > > > Am 08.11.2019 um 16:02 schrieb Ana Marija: > > > I tried it but I got this error: > > >> udt <- unique(dt[c("chr", "pos", "gene_id")]) > > > Error in `[.data.table`(dt, c("chr", "pos", "gene_id")) : > > > When i is a data.table (or character vector), the columns to join by > > > must be specified using 'on=' argument (see ?data.table), by keying x > > > (i.e. sorted, and, marked as sorted, see ?setkey), or by sharing > > > column names between x and i (i.e., a natural join). Keyed joins might > > > have further speed benefits on very large data due to x being sorted > > > in RAM. > > > > > > On Fri, Nov 8, 2019 at 8:58 AM Gerrit Eichner > > > <gerrit.eich...@math.uni-giessen.de> wrote: > > >> > > >> Hi, Ana, > > >> > > >> doesn't > > >> > > >> udt <- unique(dt[c("chr", "pos", "gene_id")]) > > >> nrow(udt) > > >> > > >> get close to what you want? > > >> > > >> Hth -- Gerrit > > >> > > >> --------------------------------------------------------------------- > > >> Dr. Gerrit Eichner Mathematical Institute, Room 212 > > >> gerrit.eich...@math.uni-giessen.de Justus-Liebig-University Giessen > > >> Tel: +49-(0)641-99-32104 Arndtstr. 2, 35392 Giessen, Germany > > >> http://www.uni-giessen.de/eichner > > >> --------------------------------------------------------------------- > > >> > > >> Am 08.11.2019 um 15:38 schrieb Ana Marija: > > >>> Hello, > > >>> > > >>> I have a data frame like this: > > >>> > > >>>> head(dt,20) > > >>> chr pos gene_id pval_nominal pval_ret wl > > >>> wr > > >>> 1: chr1 54490 ENSG00000227232 0.6084950 0.7837780 31.62278 > > >>> 21.2838 > > >>> 2: chr1 58814 ENSG00000227232 0.2952110 0.8975820 31.62278 > > >>> 21.2838 > > >>> 3: chr1 60351 ENSG00000227232 0.4397880 0.8679590 31.62278 > > >>> 21.2838 > > >>> 4: chr1 61920 ENSG00000227232 0.3195280 0.6018090 31.62278 > > >>> 21.2838 > > >>> 5: chr1 63671 ENSG00000227232 0.2377390 0.9880390 31.62278 > > >>> 21.2838 > > >>> 6: chr1 64931 ENSG00000227232 0.2766790 0.9070370 31.62278 > > >>> 21.2838 > > >>> 7: chr1 81587 ENSG00000227232 0.6057930 0.6167630 31.62278 > > >>> 21.2838 > > >>> 8: chr1 115746 ENSG00000227232 0.4078770 0.7799110 31.62278 > > >>> 21.2838 > > >>> 9: chr1 135203 ENSG00000227232 0.4078770 0.9299130 31.62278 > > >>> 21.2838 > > >>> 10: chr1 138593 ENSG00000227232 0.8464560 0.5696060 31.62278 21.2838 > > >>> > > >>> it is very big, > > >>>> dim(dt) > > >>> [1] 73719122 8 > > >>> > > >>> To count number of unique rows for all 3 columns: chr, pos and gene_id > > >>> I could just join those 3 columns and than count. But how would I find > > >>> unique number of rows for these 4 columns without joining them? > > >>> > > >>> Thanks > > >>> Ana > > >>> > > >>> ______________________________________________ > > >>> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > > >>> https://stat.ethz.ch/mailman/listinfo/r-help > > >>> PLEASE do read the posting guide > > >>> http://www.R-project.org/posting-guide.html > > >>> and provide commented, minimal, self-contained, reproducible code. > > >>> > > >> > > >> ______________________________________________ > > >> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > > >> https://stat.ethz.ch/mailman/listinfo/r-help > > >> PLEASE do read the posting guide > > >> http://www.R-project.org/posting-guide.html > > >> and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.