Dear R-Experts, Here below my reproducible example working but not entirely (working). What I understand is that there is a problem of libraries library(hbrfit) and ... ? How can I make it work entirely, many thanks for your precious help.
########SIMULATION STUDY 3 variables with 10% outliers n=2000 install.packages( "robustbase" ) install.packages( "MASS" ) install.packages( "quantreg" ) install.packages( "RobPer" ) install.packages("devtools") library("devtools") install_github("kloke/hbrfit") install.packages('http://www.stat.wmich.edu/mckean/Stat666/Pkgs/npsmReg2_0.1.1.tar.gz') install.packages( "RobStatTM" ) library(robustbase) library(MASS) library(quantreg) library(RobPer) library(hbrfit) library(RobStatTM) n<-2000 x<-runif(n, 0, 5) z <- rnorm(n, 2, 3) a <- runif(n, 0, 5) y_model<- 0.1*x - 0.5 * z - a + 10 y_obs <- y_model +c( rnorm(n*0.9, 0, 0.1), rnorm(n*0.1, 0, 0.5) ) fastMM <- lmrob( y_obs ~ x+z+a) Huber <- rlm( y_obs ~ x+z+a) Tukey <- rlm( y_obs ~ x+z+a, psi = psi.bisquare ) L1 <- rq( y_obs ~ x+z+a, tau = 0.5 ) fastTau <- FastTau(model.matrix(~newdata$x+newdata$z+newdata$a),newdata$y_obs) HBR<-hbrfit(y_obs ~ x+z+a) DCML <-lmrobdetDCML(y_obs ~ x+z+a) MSE_fastMM<-mean((fastMM$fitted.values - y_model)^2) MSE_Huber<-mean((Huber$fitted.values - y_model)^2) MSE_Tukey<-mean((Tukey$fitted.values - y_model)^2) MSE_L1<-mean((L1$fitted.values - y_model)^2) MSE_fastTau<-mean((fastTau$fitted.values - y_model)^2) MSE_HBR<-mean((HBR$fitted.values - y_model)^2) MSE_DCML<-mean((DCML$fitted.values - y_model)^2) MSE_fastMM MSE_Huber MSE_Tukey MSE_L1 MSE_fastTau MSE_HBR MSE_DCML ############### ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.