On Sun, Oct 6, 2019 at 4:24 PM Eric Berger <ericjber...@gmail.com> wrote:
> [Sending your follow-on question to the full R-help list] > > On Fri, Oct 4, 2019 at 7:13 PM javed khan <javedbtk...@gmail.com> wrote: > > > Thanks for your reply. I checked the example of treatment and control but > > I can not understand the first four lines. How can we do it if we have > the > > data (both columns) in excel and we read it in code with read.csv. > > > > Best regards > > > > On Friday, October 4, 2019, Eric Berger <ericjber...@gmail.com> wrote: > > > >> For general documentation about the effsize package you would do: > >> > help(package="effsize") > >> > >> For information on calculations related to vargha: > >> >??vargha > >> This command displays effsize::VD.A, which you can find out about via > the > >> command > >> >?effsize::VD.A > >> This displays the documentation for the function VD.A. At the top of the > >> documentation you have the Description and Usage sections. At the bottom > >> there are some examples of using the function. > >> > >> HTH, > >> Eric > >> > >> > >> On Fri, Oct 4, 2019 at 10:44 AM javed khan <javedbtk...@gmail.com> > wrote: > >> > >>> I am new to R language. I have two column data I.e X= 0.23, 0.04, 0.5, > - > >>> 0.20 etc and B= 0.34, 0.01, 0.1, 0.09 etc. The number of observations > are > >>> 100. How can I apply vargha and delaney effect size in R? I load the > data > >>> as, read.csv(mydata.csv) and load the library effsize. Please if > someone > >>> can help because I have no idea about the next step to follow. > >>> > >>> Thanks > >>> > >>> [[alternative HTML version deleted]] > >>> > >>> ______________________________________________ > >>> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > >>> https://stat.ethz.ch/mailman/listinfo/r-help > >>> PLEASE do read the posting guide > >>> http://www.R-project.org/posting-guide.html > >>> and provide commented, minimal, self-contained, reproducible code. > >>> > >> > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. >
# -*- coding: utf-8 -*- """ Created on Sun Oct 6 13:19:06 2019 @author: khh """ ############################################################################### print('#################### plottong ##################################') ############################################################################### import matplotlib.pyplot as plt # plt.rcParams["font.family"] = "Times New Roman" params = { 'font.family': 'Times New Roman', 'axes.labelsize': 8, 'text.fontsize': 8, 'legend.fontsize': 10, 'xtick.labelsize': 7, #8 'ytick.labelsize': 9, 'text.usetex': False, 'figure.figsize': [7, 4] # instead of 4.5, 4.5 } plt.rcParams.update(params) ### descriptive statistics # X.describe() ### num_dpi = 300, 600 def export_plot (plot_name, num_dpi): plt.savefig('Fig_' + plot_name + '_plot1.png', dpi = num_dpi, bbox_inches='tight', pad_inches = 0.01) plt.savefig('Fig_' + plot_name + '_plot1.tiff', dpi = num_dpi, bbox_inches='tight', pad_inches = 0.01, format="tiff", pil_kwargs={"compression": "tiff_lzw"}) # ============================================================================= # ### save plots # plt.savefig('SHOPA_' + area_type2 + '_plot1.png', dpi=600, bbox_inches='tight', pad_inches = 0.01) # plt.savefig('SHOPA_' + area_type2 + '_plot1.tiff', dpi=600, bbox_inches='tight', pad_inches = 0.01, format="tiff", pil_kwargs={"compression": "tiff_lzw"}) # # ============================================================================= ### plot histo plt.figure(); X.plot.hist(alpha = 0.5) plt.show() export_plot('testplot' , 600) plt.show() # X.diff().hist(color='k', alpha=0.5, bins=50) # plt.show() # ============================================================================= # # Plot the raw time series # fig = plt.figure(constrained_layout=True) # gs = gridspec.GridSpec(2, 3, figure=fig) # ax = fig.add_subplot(gs[0, :]) # ax.plot(t, y) # ax.set_xlabel('time [s]') # ax.set_ylabel('signal') # # ============================================================================= ### Good plt.figure() # fig, (ax0, ax1) = plt.subplots(ncols=2, constrained_layout=True) fig, ax1 = plt.subplots(ncols=1, constrained_layout=True) X.plot.box() fig = X.plot(subplots=True, figsize=(6, 6)); fig.X.subplot() ### Stacking subplots in two directions ### When stacking in two directions, the returned axs is a 2D numpy array. # # If you have to set parameters for each subplot it's handy to iterate over all subplots in a 2D grid using for ax in axs.flat:. # ### 'q_hosheal2_MEAN', 'q_khos2_MEAN', 'q_dhos3_MEAN' fig, axs = plt.subplots(2, 2) axs[0, 0].plot(X['q_hos1_MEAN'], bins = 10) axs[0, 0].set_title('Axis [0,0]') axs[0, 1].plot(X['q_hosheal2_MEAN'], bins = 10) #, 'tab:orange') axs[0, 1].set_title('Axis [0,1]') axs[1, 0].plot(X['q_khos2_MEAN'], bins =10 )#, 'tab:green') axs[1, 0].set_title('Axis [1,0]') axs[1, 1].plot(X['q_dhos3_MEAN'], bins = 10)#, 'tab:red') axs[1, 1].set_title('Axis [1,1]') for ax in axs.flat: ax.set(xlabel='x-label', ylabel='y-label') # Hide x labels and tick labels for top plots and y ticks for right plots. for ax in axs.flat: ax.label_outer() ### bin must import matplotlib.pyplot as plt plt.subplot(2, 1, 1) plt.plot(X['q_hos1_MEAN'], y, '-', linewidth = 0.1) # 'o-') plt.title('A tale of 2 subplots') plt.ylabel('Damped oscillation') plt.subplot(2, 1, 2) plt.plot(X['q_hosheal2_MEAN'], y, '.-', linewidth = 0.2) plt.xlabel('time (s)') plt.ylabel('Undamped') plt.show() export_plot('testplot' , 600) ### Good fig plt.figure(); X.plot.hist(stacked=True, bins=20) ### hist bin must import matplotlib.pyplot as plt plt.figure(figsize = [6.4, 4.8], dpi = 600); # [6.4, 4.8/9.0], dpi = 600); plt.subplot(4, 1, 1) plt.hist(X['q_hos1_MEAN'], bins= 10) #, linewidth = 0.1) plt.title('Histogram plot: hos1') plt.xlabel('Distance(meters)') plt.ylabel('Freq.') plt.subplot(4, 1, 2) plt.hist(X['q_hosheal2_MEAN'], bins = 10) #, linewidth = 0.2) plt.title('Histogram plot: hosheal2') plt.xlabel('Distance(meters)') plt.ylabel('Freq.') plt.subplot(4, 1, 3) plt.hist(X['q_khos2_MEAN'], bins = 10) #, linewidth = 0.2) plt.title('Histogram plot: khos2') plt.xlabel('Distance(meters)') plt.ylabel('Freq.') plt.subplot(4, 1, 4) plt.hist(X['q_dhos3_MEAN'], bins = 10) #, linewidth = 0.2) plt.title('Histogram plot: dhos3') plt.xlabel('Distance(meters)') plt.ylabel('Freq.') # plt.tight_layout() export_plot('Xvars_histogram_plot4' , 600) plt.show() #### Good: plt.figure(figsize = [6.4, 4.8], dpi = 600); # [6.4, 4.8/9.0], dpi = 600); plt.subplot(1, 1, 1) plt.hist(X['q_hos1_MEAN'], bins= 10) #, linewidth = 0.1) plt.title('Histogram plot: hos1') plt.xlabel('Distance(meters)') plt.ylabel('Freq.') plt.tight_layout() export_plot('Xvars_histogram_plot4=q_hos1' , 600) plt.show() plt.subplot(1, 1, 1) plt.hist(X['q_hosheal2_MEAN'], bins = 10) #, linewidth = 0.2) plt.title('Histogram plot: hosheal2') plt.xlabel('Distance(meters)') plt.ylabel('Freq.') plt.tight_layout() export_plot('Xvars_histogram_plot4=q_hosheal2' , 600) plt.show() plt.subplot(1, 1, 1) plt.hist(X['q_khos2_MEAN'], bins = 10) #, linewidth = 0.2) plt.title('Histogram plot: khos2') plt.xlabel('Distance(meters)') plt.ylabel('Freq.') plt.tight_layout() export_plot('Xvars_histogram_plot4=q_khos2' , 600) plt.show() plt.subplot(1, 1, 1) plt.hist(X['q_dhos3_MEAN'], bins = 10) #, linewidth = 0.2) plt.title('Histogram plot: dhos3') plt.xlabel('Distance(meters)') plt.ylabel('Freq.') plt.tight_layout() export_plot('Xvars_histogram_plot4=q_dhos3' , 600) plt.show() plt.figure(figsize = [6.4, 4.8], dpi = 600); # [6.4, 4.8/9.0], dpi = 600); plt.subplot(1, 1, 1) plt.hist(y, bins= 10) #, linewidth = 0.1) plt.title('Histogram plot: y(B7_2)') plt.xlabel('Facility satisfaction') plt.ylabel('Freq.') plt.tight_layout() export_plot('Yvars_histogram_plot4=y(B7_2)' , 600) plt.show() ### plt.figure(figsize = [6.4, 4.8], dpi = 600); # [6.4, 4.8/9.0], dpi = 600); # df.columns.tolist() factor1 = df[['q_hos3_MEAN', 'q2_clc2_MEAN','q_hos2_MEAN','q2_clc3_MEAN','q2_clc32_MEAN','q_dhos2_MEAN','q_hos0_MEAN', 'q_drug3_MEAN']] corr = factor1.corr() import seaborn as sns ax = sns.heatmap( corr, vmin=-1, vmax=1, center=0, cmap=sns.diverging_palette(20, 220, n=200), square=True ) ax.set_xticklabels( ax.get_xticklabels(), rotation=45, horizontalalignment='right' ); export_plot('geoqol2016_corrplot1=factor1' , 600) plt.show() ### corrplot for factors_all factors_all = df[['q_hos3_MEAN','q_hosheal2_MEAN','q2_clc2_MEAN','q_hos2_MEAN', 'q2_clc3_MEAN','q2_clc32_MEAN','q_dhos2_MEAN','q_hos0_MEAN', 'q_khos2_MEAN','q_dhos3_MEAN','q_birth_MEAN','q2_clc1_MEAN', 'q_hos1_MEAN','q_drug3_MEAN']] corr = factors_all.corr() import seaborn as sns ax = sns.heatmap( corr, vmin=-1, vmax=1, center=0, cmap=sns.diverging_palette(220, 20, sep=20, as_cmap=True), #(20, 220, n=200), # 220, 20, sep=20, as_cmap=True) square=True ) ax.set_xticklabels( ax.get_xticklabels(), rotation=45, horizontalalignment='right' ); export_plot('geoqol2016_corrplot1=factors_all' , 600) plt.show() ### plt.hist(corr) labels= list(factors_all) plt.legend(labels) # plt.legend(prop={'size': 8}) # plt.plot(corr. corr) export_plot('geoqol2016_corrplot_2=factors_all' , 600) plt.show() ### plt.subplot(1, 1, 1) plt.plot(factor1, linewidth = 0.1) plt.title('Histogram plot: hos1') plt.xlabel('Distance(meters)') plt.ylabel('Freq.') plt.tight_layout() export_plot('Xvars_histogram_plot4=q_dhos3' , 600) plt.show() ### Good fig plt.figure(); X.plot.hist(stacked=True, bins=20) plt.figure(); plt.hist(X['q_hos1_MEAN'], bins= 10, linewidth = 0.1) # 'o-') plt.show() ### Hexagonal bin plot # # X.plot.hexbin(x= 'q_hos1_MEAN', y= y, gridsize=25) ### from pandas.plotting import andrews_curves plt.figure() # andrews_curves(X, 'q_hos1_MEAN') # (data, 'Name') plt.show() # shap.summary_plot(shap_values, final_model_features) # plt.savefig('shap.force_plot1.png') ### from pandas.plotting import radviz # radviz(X, 'q_hos1_MEAN') plt.show() ### subplots # X.columns.tolist() # df[['q_hos1_MEAN', 'q_hosheal2_MEAN', 'q_khos2_MEAN', 'q_dhos3_MEAN']].plot(subplots=True, figsize=(6, 6), linewidth=0.5, linestyle='-', color='#006BB2') X.plot(subplots=True, figsize=(6, 6), linewidth=0.5, linestyle='-', color='#006BB2') # linewidth=2, linestyle='--', color='#006BB2') # plt.show() export_plot('???', 600) plt.show() # plt.figure() X.plot(subplots=True, layout=(2, 2), figsize=(6, 6), linewidth=0.5, sharex=False); # plt.show() export_plot('???', 600) plt.show() ### imporing DPI in folders from PIL import Image import glob import os DPI = 600 cwd = os.getcwd() cwd = 'C://0.DATA/_pywork/data_ML/geoqol2016/ML_qol_models/geoqol2016_2019-10-03_VIFunchecked_FAn=4confirmed/dpi600' os.chdir(cwd) list_img = glob.glob('*') #('*.png') ###("*") for img in list_img: im = Image.open(img) im.save(img, dpi=(DPI,DPI)) print(img)
______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.