Hi Malte, I only skimmed your question and looked at the desired output. I wondered if the apply function could meet your needs. Here's a small example that might help you:
m <- matrix(1:9,nrow=3) m <- cbind(m,apply(m,MAR=1,mean)) # MAR=1 says to apply the function row-wise m # [,1] [,2] [,3] [,4] # [1,] 1 4 7 4 # [2,] 2 5 8 5 # [3,] 3 6 9 6 HTH, Eric On Mon, Sep 23, 2019 at 10:18 AM Malte Hückstädt < deaddatascienti...@gmail.com> wrote: > I would like to determine the geographical distances from a number of > addresses and determine the mean value (the mean distance) from these. > > In case the dataframe has only one row, I have found a solution: > > ```r > # Pakete laden > library(readxl) > library(openxlsx) > library(googleway) > #library(sf) > library(tidyverse) > library(geosphere) > library("ggmap") > > #API Key bestimmen > set_key("") > api_key <- "" > register_google(key=api_key) > > # Data > df <- data.frame( > V1 = c("80538 München, Germany", "01328 Dresden, Germany", "80538 > München, Germany", > "07745 Jena, Germany", "10117 Berlin, Germany"), > V2 = c("82152 Planegg, Germany", "01069 Dresden, Germany", "82152 > Planegg, Germany", > "07743 Jena, Germany", "14195 Berlin, Germany"), > V3 = c("85748 Garching, Germany", "01069 Dresden, Germany", "85748 > Garching, Germany", > NA, "10318 Berlin, Germany"), > V4 = c("80805 München, Germany", "01187 Dresden, Germany", "80805 > München, Germany", > "07745 Jena, Germany", NA), stringsAsFactors=FALSE > ) > > #replace NA for geocode-funktion > df[is.na(df)] <- "" > > #slice it > df1 <- slice(df, 5:5) > > # lon lat Informations > df_2 <- geocode(c(df1$V1, df1$V2,df1$V3, df1$V4)) %>% na.omit() > > # to Matrix > mat_df <- as.matrix(df_2) > > #dist-mat > dist_mat <- distm(mat_df) > > #mean-dist of row 5 > mean(dist_mat[lower.tri(dist_mat)])/1000 > ``` > > Unfortunately, I fail to implement a function that executes the code for > an entire data set. My current problem is, that the function does not > calculate the distance-averages rowwise, but calculates the average value > from all lines of the data set. > > ```r > #Funktion > > Mean_Dist <- function(df,w,x,y,z) { > > # for (row in 1:nrow(df)) { > # dist_mat <- geocode(c(w, x, y, z)) > # > # } > > df <- geocode(c(w, x, y, z)) %>% na.omit() # ziehe lon lat Informationen > aus Adressen > > mat_df <- as.matrix(df) # schreibe diese in eine Matrix > > dist_mat <- distm(mat_df) > > dist_mean <- mean(dist_mat[lower.tri(dist_mat)]) > > return(dist_mean) > } > > df %>% mutate(lon = Mean_Dist(df,df$V1, df$V2,df$V3, df$V4)/1000) > > ``` > Do you have any idea what mistake I made? > > to clarify my question: What I'm trying to create a dataframe like this > one (V5): > > ```r > V1 V2 V3 > V4 V5 > <chr> <chr> <chr> > <chr> <numeric> > 1 80538 München, Germany 82152 Planegg, Germany 85748 Garching, Germany > 80805 München, Germany Mean_Dist_row1 > 2 01328 Dresden, Germany 01069 Dresden, Germany 01069 Dresden, Germany > 01187 Dresden, Germany Mean_Dist_row2 > 3 80538 München, Germany 82152 Planegg, Germany 85748 Garching, Germany > 80805 München, Germany Mean_Dist_row3 > 4 07745 Jena, Germany 07743 Jena, Germany 07745 Jena, Germany > 07745 Jena, Germany Mean_Dist_row4 > 5 10117 Berlin, Germany 14195 Berlin, Germany 10318 Berlin, Germany > 14476 Potsdam, Germany Mean_Dist_row5 > ``` > > eg an average of the distance of each row. > ______________________________________________ > R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.