Yes, it works for me. Eik Vettorazzi <e.vettora...@uke.de>, 21 Kas 2018 Çar, 00:19 tarihinde şunu yazdı:
> How about this: > > library(rootSolve) > f1<-function(x)5/((1+x)^1) + 5/((1+x)^2) + 5/((1+x)^3) + 105/((1+x)^4) -105 > uniroot.all( f1,c(-1e6,1e6)) > > [1] -1.9881665 0.0363435 > > Cheers > > > Am 20.11.2018 um 13:09 schrieb Engin Yılmaz: > > Dea(R) > > I try to solve one equation but this program did not give me real roots > > for example > > yacas("Solve( 5/((1+x)^1) + 5/((1+x)^2) + 5/((1+x)^3) + 105/((1+x)^4) > -105 > > ==0, x)") > > gave me following results > > How can I find real roots? > > > > expression(list(x == complex_cartesian((1/42 - ((1/63 - > > ((root(7339451281/3087580356, > > 2) - 4535/71442)^(1/3) - (4535/71442 + root(7339451281/3087580356, > > 2))^(1/3)))/21 - -2/21)/(4 * root(((root(7339451281/3087580356, > > 2) - 4535/71442)^(1/3) - (4535/71442 + root(7339451281/3087580356, > > 2))^(1/3) - 1/63)^2/4 + 1, 2)))/2 - 1, root(4 * > > (((root(7339451281/3087580356, > > 2) - 4535/71442)^(1/3) - (4535/71442 + root(7339451281/3087580356, > > 2))^(1/3) - 1/63)/2 + root(((root(7339451281/3087580356, > > 2) - 4535/71442)^(1/3) - (4535/71442 + root(7339451281/3087580356, > > 2))^(1/3) - 1/63)^2/4 + 1, 2)) - (((1/63 - > > ((root(7339451281/3087580356, > > 2) - 4535/71442)^(1/3) - (4535/71442 + root(7339451281/3087580356, > > 2))^(1/3)))/21 - -2/21)/(4 * root(((root(7339451281/3087580356, > > 2) - 4535/71442)^(1/3) - (4535/71442 + root(7339451281/3087580356, > > 2))^(1/3) - 1/63)^2/4 + 1, 2)) - 1/42)^2, 2)/2),...more > > > > > > > > > > Engin Yılmaz <ispanyol...@gmail.com>, 20 Kas 2018 Sal, 12:53 tarihinde > şunu > > yazdı: > > > >> Thanks a lot! > >> > >> Berend Hasselman <b...@xs4all.nl>, 20 Kas 2018 Sal, 12:02 tarihinde şunu > >> yazdı: > >> > >>> > >>> > >>> R package Ryacas may be what you want. > >>> > >>> Berend > >>> > >>> > >>>> On 20 Nov 2018, at 09:42, Engin Yılmaz <ispanyol...@gmail.com> wrote: > >>>> > >>>> Dea(R) > >>>> > >>>> Do you know any system solver in R ? > >>>> > >>>> For example, in matlab, is very easy > >>>> > >>>> syms a b c x eqn = a*x^2 + b*x + c == 0; sol = solve(eqn) > >>>> > >>>> How can I find this type code in R (or directly solver)? > >>>> > >>>> *Since(R)ely* > >>>> Engin YILMAZ > >>>> > >>>> [[alternative HTML version deleted]] > >>>> > >>>> ______________________________________________ > >>>> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > >>>> https://stat.ethz.ch/mailman/listinfo/r-help > >>>> PLEASE do read the posting guide > >>> http://www.R-project.org/posting-guide.html > >>>> and provide commented, minimal, self-contained, reproducible code. > >>> > >>> > >> > >> -- > >> *Saygılarımla* > >> Engin YILMAZ > >> > > > > > > -- > Eik Vettorazzi > > Universitätsklinikum Hamburg-Eppendorf > Institut für Medizinische Biometrie und Epidemiologie > > Martinistraße 52 > Gebäude W 34 > 20246 Hamburg > > Telefon: +49 (0) 40 7410 - 58243 > Fax: +49 (0) 40 7410 - 57790 > > Web: www.uke.de/imbe > > > -- > > _____________________________________________________________________ > > Universitätsklinikum Hamburg-Eppendorf; Körperschaft des öffentlichen > Rechts; Gerichtsstand: Hamburg | www.uke.de > Vorstandsmitglieder: Prof. Dr. Burkhard Göke (Vorsitzender), Prof. Dr. Dr. > Uwe Koch-Gromus, Joachim Prölß, Marya Verdel > _____________________________________________________________________ > > SAVE PAPER - THINK BEFORE PRINTING > -- *Saygılarımla* Engin YILMAZ [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.