Dear Thanh Tran, When you start a discussion on r-help, it's polite to keep it there so other people can see what transpires. I'm consequently cc'ing this response to the r-help list.
The problem with your code is that anova(), as opposed to Anova(), has no type argument. Here's what I get with your data. I hope that the code and output don't get too mangled: > data <- read.csv("Saha research.csv", header=TRUE) > data <- within(data, { + tem <- as.factor(temperature) + ac <- as.factor (AC) + av <- as.factor(AV) + thick <- as.factor(Thickness) + }) > library(car) Loading required package: carData > options(contrasts = c("contr.sum", "contr.poly")) > mod <- lm(KIC ~ tem*ac + tem*av + tem*thick + ac*av +ac*thick + av*thick, + data=data) > anova(mod) # type I (sequential) Analysis of Variance Table Response: KIC Df Sum Sq Mean Sq F value Pr(>F) tem 2 15.3917 7.6958 427.9926 < 2.2e-16 *** ac 2 0.1709 0.0854 4.7510 0.0096967 ** av 1 1.9097 1.9097 106.2055 < 2.2e-16 *** thick 2 0.2041 0.1021 5.6756 0.0040359 ** tem:ac 4 0.5653 0.1413 7.8598 6.973e-06 *** tem:av 2 1.7192 0.8596 47.8046 < 2.2e-16 *** tem:thick 4 0.0728 0.0182 1.0120 0.4024210 ac:av 2 0.3175 0.1588 8.8297 0.0002154 *** ac:thick 4 0.0883 0.0221 1.2280 0.3003570 av:thick 2 0.0662 0.0331 1.8421 0.1613058 Residuals 190 3.4164 0.0180 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 > Anova(mod) # type II Anova Table (Type II tests) Response: KIC Sum Sq Df F value Pr(>F) tem 15.3917 2 427.9926 < 2.2e-16 *** ac 0.1709 2 4.7510 0.0096967 ** av 1.9097 1 106.2055 < 2.2e-16 *** thick 0.2041 2 5.6756 0.0040359 ** tem:ac 0.5653 4 7.8598 6.973e-06 *** tem:av 1.7192 2 47.8046 < 2.2e-16 *** tem:thick 0.0728 4 1.0120 0.4024210 ac:av 0.3175 2 8.8297 0.0002154 *** ac:thick 0.0883 4 1.2280 0.3003570 av:thick 0.0662 2 1.8421 0.1613058 Residuals 3.4164 190 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 > Anova(mod, type=3) # type III Anova Table (Type III tests) Response: KIC Sum Sq Df F value Pr(>F) (Intercept) 102.430 1 5696.4740 < 2.2e-16 *** tem 15.392 2 427.9926 < 2.2e-16 *** ac 0.171 2 4.7510 0.0096967 ** av 1.910 1 106.2055 < 2.2e-16 *** thick 0.204 2 5.6756 0.0040359 ** tem:ac 0.565 4 7.8598 6.973e-06 *** tem:av 1.719 2 47.8046 < 2.2e-16 *** tem:thick 0.073 4 1.0120 0.4024210 ac:av 0.318 2 8.8297 0.0002154 *** ac:thick 0.088 4 1.2280 0.3003570 av:thick 0.066 2 1.8421 0.1613058 Residuals 3.416 190 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 If you have questions about Minitab there's probably another place to ask. It's not my opinion that type-III tests are generally preferable to type-II tests. Focus, in my opinion, should be on what hypotheses are being tested. If you want to see more detail, you could consult the book with which the car package is associated: see citation(package="car"). Best, John > -----Original Message----- > From: Thanh Tran [mailto:masternha...@gmail.com] > Sent: Tuesday, November 6, 2018 9:15 PM > To: Fox, John <j...@mcmaster.ca> > Subject: Re: [R] Sum of Squares Type I, II, III for ANOVA > > Dear Prof. John Fox, > Thank you for your answer. The CSV data was added as the attached file again. > I try to set the contrasts properly *before* I fit the model but I received a > problem as follows. > > > setwd("C:/NHAT/HOC TAP/R/Test/Anova") data = read.csv("Saha > > research.csv", header =T) > > attach(data) > > tem = as.factor(temperature) > > ac= as.factor (AC) > > av = as.factor(AV) > > thick = as.factor(Thickness) > > library(car) > Loading required package: carData > > options(contrasts = c("contr.sum", "contr.poly")) mod <- lm(KIC ~ > > tem*ac + tem*av + tem*thick + ac*av +ac*thick + av*thick) > > anova(mod,type= 3) > Error: $ operator is invalid for atomic vectors > > > Another problem is that in the paper that I read, the authors used MINITAB to > analyze Anova. The authors use "adjusted sums of squares" calculate the p- > value. So which should I use? Type I adjusted SS or Type III sequential SS? > Minitab help tells me that I would "usually" want to use type III adjusted > SS, as > type I sequential "sums of squares can differ when your design is unbalanced" > - which mine is. The R functions I am using are clearly using the type I > sequential SS. > > Thanks > Nhat Tran > > > Vào Th 4, 7 thg 11, 2018 vào lúc 10:41 Fox, John <j...@mcmaster.ca > <mailto:j...@mcmaster.ca> > đã viết: > > > Dear Nhat Tran, > > The output that you show is unreadable and as far as I can see, the > data aren't attached, but perhaps the following will help: First, if you want > Anova() to compute type III tests, then you have to set the contrasts properly > *before* you fit the model, not after. Second, you can specify the model much > more compactly as > > mod <- lm(KIC ~ tem*ac + tem*av + tem*thick + ac*av +ac*thick + > av*thick) > > Finally, as sound general practice, I'd not attach the data, but rather > put your recoded variables in the data frame and then specify the data > argument to lm(). > > I hope that this helps, > John > > ----------------------------------------------------------------- > John Fox > Professor Emeritus > McMaster University > Hamilton, Ontario, Canada > Web: https://socialsciences.mcmaster.ca/jfox/ > > > > > -----Original Message----- > > From: R-help [mailto:r-help-boun...@r-project.org <mailto:r-help- > boun...@r-project.org> ] On Behalf Of Thanh Tran > > Sent: Tuesday, November 6, 2018 6:58 PM > > To: r-help@r-project.org <mailto:r-help@r-project.org> > > Subject: [R] Sum of Squares Type I, II, III for ANOVA > > > > Hi everyone, > > I'm studying the ANOVA in R and have some questions to share. I > investigate > > the effects of 4 factors (temperature-3 levels, asphalt content-3 > levels, air > > voids-2 levels, and sample thickness-3 levels) on the hardness of > asphalt > > concrete in the tensile test (abbreviated as KIC). These data were > taken from a > > acticle paper. The codes were wrriten as the follows: > > > > > data = read.csv("Saha research.csv", header =T) > > > attach(data) > > > tem = as.factor(temperature) > > > ac= as.factor (AC) > > > av = as.factor(AV) > > > thick = as.factor(Thickness) > > > model = > > > lm(KIC~tem+ac+av+thick+tem:ac+tem:av+tem:thick+ac:av+ac:thick+av:thick) > > > anova(model) #Type I tests > > > library(car) Loading required package: carData > > > > anova(lm(KIC~tem+ac+av+thick+tem:ac+tem:av+tem:thick+ac:av+ac:thick+av > > :thick),type=2) > > Error: $ operator is invalid for atomic vectors > > > options(contrasts = c("contr.sum", "contr.poly")) > > > Anova(model,type="3") # Type III tests > > > Anova(model,type="2") # Type II tests > > > > With R, three results from Type I, II, and III almost have the same as > follows. > > > > Analysis of Variance Table Response: KIC Df Sum Sq Mean Sq F value > Pr(>F) > > tem 2 15.3917 7.6958 427.9926 < 2.2e-16 *** ac 2 0.1709 0.0854 > 4.7510 > > 0.0096967 ** av 1 1.9097 1.9097 106.2055 < 2.2e-16 *** thick 2 > 0.2041 > > 0.1021 5.6756 0.0040359 ** tem:ac 4 0.5653 0.1413 7.8598 6.973e- > 06 *** > > tem:av 2 1.7192 0.8596 47.8046 < 2.2e-16 *** tem:thick 4 0.0728 > 0.0182 > > 1.0120 0.4024210 ac:av 2 0.3175 0.1588 8.8297 0.0002154 *** > ac:thick 4 > > 0.0883 0.0221 1.2280 0.3003570 av:thick 2 0.0662 0.0331 1.8421 > 0.1613058 > > Residuals 190 3.4164 0.0180 --- Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 > ‘*’ > > 0.05 ‘.’ 0.1 ‘ ’ 1 > > > > However, these results are different from the results in the article, > especially > > for the interaction (air voids and sample thickness). The results > presented in > > the article are as follows: > > Analysis of variance for KIC, using Adjusted SS for tests. Source DF > Seq SS Adj > > MS F-stat P-value Model findings Temperature 2 15.39355 7.69677 > 426.68 > > <0.01 Significant AC 2 0.95784 0.47892 26.55 <0.01 Significant AV 1 > 0.57035 > > 0.57035 31.62 <0.01 Significant Thickness 2 0.20269 0.10135 5.62 > <0.01 > > Significant Temperature⁄AC 4 1.37762 0.34441 19.09 <0.01 > Significant > > Temperature⁄AV 2 0.8329 0.41645 23.09 <0.01 Significant > > Temperature⁄thickness 4 0.07135 0.01784 0.99 0.415 Not > significant AC⁄AV 2 > > 0.86557 0.43279 23.99 <0.01 Significant AC⁄thickness 4 0.04337 > 0.01084 0.6 > > 0.662 Not significant AV⁄thickness 2 0.17394 0.08697 4.82 <0.01 > Significant > > Error 190 3.42734 0.01804 Total 215 23.91653 > > > > Therefore, I wonder that whether there is an error in my code or > there is > > another type of ANOVA in R. If you could answer my problems, I > would be > > most grateful. > > Best regards, > > Nhat Tran > > Ps: I also added a CSV file and the paper for practicing R. > > ______________________________________________ > > R-help@r-project.org <mailto:R-help@r-project.org> mailing list -- > To UNSUBSCRIBE and more, see > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide http://www.R-project.org/posting- > > guide.html > > and provide commented, minimal, self-contained, reproducible > code. > ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.