Dear list members, I want to perform an MM-regression. This seems an easy task using the function lmrob(), however, this function provides me with NA coefficients. My data generating process is as follows:
rho <- 0.15 # low interdependency Sigma <- matrix(rho, d, d); diag(Sigma) <- 1 x.clean <- mvrnorm(n, rep(0,d), Sigma) beta <- c(1.0, 2.0, 3.0, 4.0) error <- rnorm(n = n, mean = 0, sd = 1) y <- as.data.frame(beta[1]*rep(1, n) + beta[2]*x.clean[,1] + beta[3]*x.clean[,2] + beta[4]*x.clean[,3] + error) xy.clean <- cbind(x.clean, y) colnames(xy.clean) <- c("x1", "x2", "x3", "y") Then, I pass the following formula to lmrob: f <- y ~ x1 + x2 + x3 Finally, I run lmrob: lmrob(f, data = data, cov = ".vcov.w") and this results in NA coefficients. It would be great if anyone can help me out. Thanks in advance. Regards, Christien [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.