Interestingly, the <<- operator is also a lot faster than using a namespace explicitly, and only slightly slower than using <- with local variables, see below. But, surely, both must at some point insert values in a given environment — either the local one, for <-, or an enclosing one, for <<- — so I guess I am asking if there is a more low-level assignment operation I can get my hands on without diving into C?
factorial <- function(n, acc = 1) { if (n == 1) acc else factorial(n - 1, n * acc) } factorial_tr_manual <- function (n, acc = 1) { repeat { if (n <= 1) return(acc) else { .tailr_n <- n - 1 .tailr_acc <- acc * n n <- .tailr_n acc <- .tailr_acc next } } } factorial_tr_automatic_1 <- function(n, acc = 1) { .tailr_n <- n .tailr_acc <- acc callCC(function(escape) { repeat { n <- .tailr_n acc <- .tailr_acc if (n <= 1) { escape(acc) } else { .tailr_n <<- n - 1 .tailr_acc <<- n * acc } } }) } factorial_tr_automatic_2 <- function(n, acc = 1) { .tailr_env <- rlang::get_env() callCC(function(escape) { repeat { if (n <= 1) { escape(acc) } else { .tailr_env$.tailr_n <- n - 1 .tailr_env$.tailr_acc <- n * acc .tailr_env$n <- .tailr_env$.tailr_n .tailr_env$acc <- .tailr_env$.tailr_acc } } }) } microbenchmark::microbenchmark(factorial(1000), factorial_tr_manual(1000), factorial_tr_automatic_1(1000), factorial_tr_automatic_2(1000)) Unit: microseconds expr min lq mean median uq max neval factorial(1000) 884.137 942.060 1076.3949 977.6235 1042.5035 2889.779 100 factorial_tr_manual(1000) 110.215 116.919 130.2337 118.7350 122.7495 255.062 100 factorial_tr_automatic_1(1000) 179.897 183.437 212.8879 187.8250 195.7670 979.352 100 factorial_tr_automatic_2(1000) 508.353 534.328 601.9643 560.7830 587.8350 1424.260 100 Cheers On 26 Feb 2018, 21.12 +0100, Thomas Mailund <thomas.mail...@gmail.com>, wrote: > Following up on this attempt of implementing the tail-recursion optimisation > — now that I’ve finally had the chance to look at it again — I find that > non-local return implemented with callCC doesn’t actually incur much overhead > once I do it more sensibly. I haven’t found a good way to handle parallel > assignments that isn’t vastly slower than simply introducing extra variables, > so I am going with that solution. However, I have now run into another > problem involving those local variables — and assigning to local variables in > general. > > Consider again the factorial function and three different ways of > implementing it using the tail recursion optimisation: > > factorial <- function(n, acc = 1) { > if (n == 1) acc > else factorial(n - 1, n * acc) > } > > factorial_tr_manual <- function (n, acc = 1) > { > repeat { > if (n <= 1) > return(acc) > else { > .tailr_n <- n - 1 > .tailr_acc <- acc * n > n <- .tailr_n > acc <- .tailr_acc > next > } > } > } > > factorial_tr_automatic_1 <- function(n, acc = 1) { > callCC(function(escape) { > repeat { > if (n <= 1) { > escape(acc) > } else { > .tailr_n <- n - 1 > .tailr_acc <- n * acc > n <- .tailr_n > acc <- .tailr_acc > } > } > }) > } > > factorial_tr_automatic_2 <- function(n, acc = 1) { > .tailr_env <- rlang::get_env() > callCC(function(escape) { > repeat { > if (n <= 1) { > escape(acc) > } else { > .tailr_env$.tailr_n <- n - 1 > .tailr_env$.tailr_acc <- n * acc > .tailr_env$n <- .tailr_env$.tailr_n > .tailr_env$acc <- .tailr_env$.tailr_acc > } > } > }) > } > > The factorial_tr_manual function is how I would implement the function > manually while factorial_tr_automatic_1 is what my package used to come up > with. It handles non-local returns, because this is something I need in > general. Finally, factorial_tr_automatic_2 accesses the local variables > explicitly through the environment, which is what my package currently > produces. > > The difference between supporting non-local returns and not is tiny, but > explicitly accessing variables through their environment costs me about a > factor of five — something that surprised me. > > > microbenchmark::microbenchmark(factorial(1000), > + factorial_tr_manual(1000), > + factorial_tr_automatic_1(1000), > + factorial_tr_automatic_2(1000)) > Unit: microseconds > expr min lq mean median > factorial(1000) 756.357 810.4135 963.1040 856.3315 > factorial_tr_manual(1000) 104.838 119.7595 198.7347 129.0870 > factorial_tr_automatic_1(1000) 112.354 125.5145 211.6148 135.5255 > factorial_tr_automatic_2(1000) 461.015 544.7035 688.5988 565.3240 > uq max neval > 945.3110 4149.099 100 > 136.8200 4190.331 100 > 152.9625 5944.312 100 > 600.5235 7798.622 100 > > The simple solution, of course, is to not do that, but then I can’t handle > expressions inside calls to “with”. And I would really like to, because then > I can combine tail recursion with pattern matching. > > I can define linked lists and a length function on them like this: > > library(pmatch) > llist := NIL | CONS(car, cdr : llist) > > llength <- function(llist, acc = 0) { > cases(llist, > NIL -> acc, > CONS(car, cdr) -> llength(cdr, acc + 1)) > } > > The tail-recursion I get out of transforming this function looks like this: > > llength_tr <- function (llist, acc = 0) { > .tailr_env <- rlang::get_env() > callCC(function(escape) { > repeat { > if (!rlang::is_null(..match_env <- test_pattern(llist, > NIL))) > with(..match_env, escape(acc)) > > else if (!rlang::is_null(..match_env <- > test_pattern(llist, CONS(car, cdr)))) > with(..match_env, { > .tailr_env$.tailr_llist <- cdr > .tailr_env$.tailr_acc <- acc + 1 > .tailr_env$llist <- .tailr_env$.tailr_llist > .tailr_env$acc <- .tailr_env$.tailr_acc > }) > } > }) > } > > Maybe not the prettiest code, but you are not supposed to actually see it, of > course. > > There is not much gain in speed > > Unit: milliseconds > expr min lq mean median uq > llength(test_llist) 70.74605 76.08734 87.78418 85.81193 94.66378 > llength_tr(test_llist) 45.16946 51.56856 59.09306 57.00101 63.07044 > max neval > 182.4894 100 > 166.6990 100 > > but you don’t run out of stack space > > > llength(make_llist(1000)) > Error: evaluation nested too deeply: infinite recursion / > options(expressions=)? > Error during wrapup: C stack usage 7990648 is too close to the limit > > llength_tr(make_llist(1000)) > [1] 1000 > > I should be able to make the function go faster if I had a faster way of > handling the variable assignments, but inside “with”, I’m not sure how to do > that… > > Any suggestions? > > Cheers > > On 11 Feb 2018, 16.48 +0100, Thomas Mailund <thomas.mail...@gmail.com>, wrote: > > Hi guys, > > > > I am working on some code for automatically translating recursive functions > > into looping functions to implemented tail-recursion optimisations. See > > https://github.com/mailund/tailr > > > > As a toy-example, consider the factorial function > > > > factorial <- function(n, acc = 1) { > > if (n <= 1) acc > > else factorial(n - 1, acc * n) > > } > > > > I can automatically translate this into the loop-version > > > > factorial_tr_1 <- function (n, acc = 1) > > { > > repeat { > > if (n <= 1) > > return(acc) > > else { > > .tailr_n <- n - 1 > > .tailr_acc <- acc * acc > > n <- .tailr_n > > acc <- .tailr_acc > > next > > } > > } > > } > > > > which will run faster and not have problems with recursion depths. However, > > I’m not entirely happy with this version for two reasons: I am not happy > > with introducing the temporary variables and this rewrite will not work if > > I try to over-scope an evaluation context. > > > > I have two related questions, one related to parallel assignments — i.e. > > expressions to variables so the expression uses the old variable values and > > not the new values until the assignments are all done — and one related to > > restarting a loop from nested loops or from nested expressions in `with` > > expressions or similar. > > > > I can implement parallel assignment using something like rlang::env_bind: > > > > factorial_tr_2 <- function (n, acc = 1) > > { > > .tailr_env <- rlang::get_env() > > repeat { > > if (n <= 1) > > return(acc) > > else { > > rlang::env_bind(.tailr_env, n = n - 1, acc = acc * n) > > next > > } > > } > > } > > > > This reduces the number of additional variables I need to one, but is a > > couple of orders of magnitude slower than the first version. > > > > > microbenchmark::microbenchmark(factorial(100), > > + factorial_tr_1(100), > > + factorial_tr_2(100)) > > Unit: microseconds > > expr min lq mean median uq max neval > > factorial(100) 53.978 60.543 77.76203 71.0635 85.947 180.251 100 > > factorial_tr_1(100) 9.022 9.903 11.52563 11.0430 11.984 28.464 100 > > factorial_tr_2(100) 5870.565 6109.905 6534.13607 6320.4830 6756.463 > > 8177.635 100 > > > > > > Is there another way to do parallel assignments that doesn’t cost this much > > in running time? > > > > My other problem is the use of `next`. I would like to combine > > tail-recursion optimisation with pattern matching as in > > https://github.com/mailund/pmatch where I can, for example, define a linked > > list like this: > > > > devtools::install_github("mailund/pmatch”) > > library(pmatch) > > llist := NIL | CONS(car, cdr : llist) > > > > and define a function for computing the length of a list like this: > > > > list_length <- function(lst, acc = 0) { > > force(acc) > > cases(lst, > > NIL -> acc, > > CONS(car, cdr) -> list_length(cdr, acc + 1)) > > } > > > > The `cases` function creates an environment that binds variables in a > > pattern-description that over-scopes the expression to the right of `->`, > > so the recursive call in this example have access to the variables `cdr` > > and `car`. > > > > I can transform a `cases` call to one that creates the environment > > containing the bound variables and then evaluate this using `eval` or > > `with`, but in either case, a call to `next` will not work in such a > > context. The expression will be evaluated inside `bind` or `with`, and not > > in the `list_lenght` function. > > > > A version that *will* work, is something like this > > > > factorial_tr_3 <- function (n, acc = 1) > > { > > .tailr_env <- rlang::get_env() > > .tailr_frame <- rlang::current_frame() > > repeat { > > if (n <= 1) > > rlang::return_from(.tailr_frame, acc) > > else { > > rlang::env_bind(.tailr_env, n = n - 1, acc = acc * n) > > rlang::return_to(.tailr_frame) > > } > > } > > } > > > > Here, again, for the factorial function since this is easier to follow than > > the list-length function. > > > > This solution will also work if you return values from inside loops, where > > `next` wouldn’t work either. > > > > Using `rlang::return_from` and `rlang::return_to` implements the right > > semantics, but costs me another order of magnitude in running time. > > > > microbenchmark::microbenchmark(factorial(100), > > factorial_tr_1(100), > > factorial_tr_2(100), > > factorial_tr_3(100)) > > Unit: microseconds > > expr min lq mean median uq max neval > > factorial(100) 52.479 60.2640 93.43069 67.5130 83.925 2062.481 100 > > factorial_tr_1(100) 8.875 9.6525 49.19595 10.6945 11.217 3818.823 100 > > factorial_tr_2(100) 5296.350 5525.0745 5973.77664 5737.8730 6260.128 > > 8471.301 100 > > factorial_tr_3(100) 77554.457 80757.0905 87307.28737 84004.0725 89859.169 > > 171039.228 100 > > > > I can live with the “introducing extra variables” solution to parallel > > assignment, and I could hack my way out of using `with` or `bind` in > > rewriting `cases`, but restarting a `repeat` loop would really make for a > > nicer solution. I know that `goto` is considered harmful, but really, in > > this case, it is what I want. > > > > A `callCC` version also solves the problem > > > > factorial_tr_4 <- function(n, acc = 1) { > > function_body <- function(continuation) { > > if (n <= 1) { > > continuation(acc) > > } else { > > continuation(list("continue", n = n - 1, acc = acc * n)) > > } > > } > > repeat { > > result <- callCC(function_body) > > if (is.list(result) && result[[1]] == "continue") { > > n <- result$n > > acc <- result$acc > > next > > } else { > > return(result) > > } > > } > > } > > > > But this requires that I know how to distinguish between a valid return > > value and a tag for “next” and is still a lot slower than the `next` > > solution > > > > microbenchmark::microbenchmark(factorial(100), > > factorial_tr_1(100), > > factorial_tr_2(100), > > factorial_tr_3(100), > > factorial_tr_4(100)) > > Unit: microseconds > > expr min lq mean median uq max neval > > factorial(100) 54.109 61.8095 81.33167 81.8785 89.748 243.554 100 > > factorial_tr_1(100) 9.025 9.9035 11.38607 11.1990 12.008 22.375 100 > > factorial_tr_2(100) 5272.524 5798.3965 6302.40467 6077.7180 6492.959 > > 9967.237 100 > > factorial_tr_3(100) 66186.080 72336.2810 76480.75172 73632.9665 75405.054 > > 203785.673 100 > > factorial_tr_4(100) 270.978 302.7890 337.48763 313.9930 334.096 1425.702 100 > > > > I don’t necessarily need the tail-recursion optimisation to be faster than > > the recursive version; just getting out of the problem of too deep > > recursions is a benefit, but I would rather not pay with an order of > > magnitude for it. I could, of course, try to handle cases that works with > > `next` in one way, and other cases using `callCC`, but I feel it should be > > possible with a version that handles all cases the same way. > > > > Is there any way to achieve this? > > > > Cheers > > Thomas > > > > > > > > > > > > > > > > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.