Thanks for your answer.
However, my variable is simulated from the cumulative distribution function of the Poisson distribution. So, the pattern obtained from the function "qpois" is not the same as the observed pattern (i.e., obtained from the function "ppois") set.seed(5) mortality_probability <- round(ppois(seq(0, 7, by = 1), lambda = 0.9), 2) barplot(mortality_probability, names.arg = seq(0, 7, by = 1), xlab = "Age class", ylab = "Probability") library(lhs) set.seed(1) parm <- c("var1", "var2", "mortality_probability") X <- randomLHS(100, length(parm)) colnames(X) <- c("var1", "var2", "mortality_probability") X[, "mortality_probability"] <- qpois(X[, "mortality_probability"], 0.9) hist(X[, "mortality_probability"]) Thanks for your time Marine ________________________________ De : S Ellison <s.elli...@lgcgroup.com> Envoy� : lundi 7 ao�t 2017 14:36 � : Marine Regis; r-help@r-project.org Objet : RE: Latin hypercube sampling from a non-uniform distribution > How can I draw a Hypercube sample for the variable mortality_probability so > that this variable exhibits the same pattern as the observed distribution? One simple way is to use the uniform random output of randomLHS as input to the quantile function for your desired distribution(s). For example: q <- randomLHS(1000, 3) colnames(q) <- c("A", "B", "mort") q[, "mort"] <- qpois(q[,"mort"], 1.5) S Ellison ******************************************************************* This email and any attachments are confidential. Any use...{{dropped:11}}
______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.