Hi Pateek, Try this: ppdat<-read.table(text="Values Churn 21 1 22 1 31.2 1 32 1 35 0 43 1 45 0 67 1 67 0 76 0 89 1", header=TRUE) ppdat$Valbin<-cut(ppdat$Values,breaks=c(20.9,43.7,66.3,89.1)) binPct<-function(x) return(100*sum(x)/length(x)) binnedPct<-by(ppdat$Churn,ppdat$Valbin,binPct) bpctdf<-data.frame('Binned data'=names(binnedPct), 'churn%'=as.vector(binnedPct)) bpctdf
Jim On Tue, Apr 18, 2017 at 5:20 AM, prateek pande <prtkpa...@gmail.com> wrote: > I have a data, in the form mentioned below. > > Values Churn > 21 1 > 22 1 > 31.2 1 > 32 1 > 35 0 > 43 1 > 45 0 > 67 1 > 67 0 > 76 0 > 89 1 > > Now i want to bin the values variables into bins and corresponding that > want the churn percentage, like mentioned below > Binned data churn% > (20.9,43.7] 0.83 > (43.7,66.3] 0 > (66.3,89.1] 0.50 > > Please help > > « Return to Rcom-l <http://r.789695.n4.nabble.com/Rcom-l-f930477.html> | 3 > v > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.