Hello,

This does what you want.

rownames(as.data.frame(TSSeriesModel1Forecast))

Hope this helps,

Rui Barradas

Em 15-03-2017 16:24, Paul Bernal escreveu:
Hello Rui,

I have attached the .csv file, I will attach it again.

Please let me know if you can access it.

Cheers,

Paul

2017-03-15 11:05 GMT-05:00 Rui Barradas <ruipbarra...@sapo.pt
<mailto:ruipbarra...@sapo.pt>>:

    Hello,

    Since we don't have access to file ContainerDataNEW.csv I cannot say
    for sure but it seems that those dates are the rownames so you could try

    rownames(TSSeriesModel1Forecast)

    and see what it gives. Or I might be completely mistaken.

    Hope this helps,

    Rui Barradas


    Em 15-03-2017 15:50, Paul Bernal escreveu:

        Dear all,

        I am currently using R for windows Version 3.3.3 (I will provide the
        sessionInfo() output below)

            library("Rcmdr")

        Loading required package: splines
        Loading required package: RcmdrMisc
        Loading required package: car
        Loading required package: sandwich

        Rcmdr Version 2.3-2

            library(forecast)

            library(tseries)


              'tseries' version: 0.10-35

              'tseries' is a package for time series analysis and
        computational
              finance.

              See 'library(help="tseries")' for details.

            library(stats)

            library(stats4)

            Data<-read.csv("ContainerDataNEW.csv")

            TSData<-ts(Data[,1], start=c(1985,10), frequency=12)

            TSeriesModel1<-ets(TSData)

            TSSeriesModel1Forecast<-forecast(TSeriesModel1,h=24)


        Now the output from forecasts is the following:

                          Point Forecast    Lo 80    Hi 80       Lo 95
                  Hi 95
        Apr 2017       67.62845 30.73747 104.5194 11.20856 124.0483
        May 2017       67.62845 30.73747 104.5194 11.20856 124.0483
        Jun 2017       67.62845 30.73747 104.5194 11.20856 124.0483
        Jul 2017       67.62845 30.73747 104.5194 11.20856 124.0483
        Aug 2017       67.62845 30.73747 104.5194 11.20856 124.0483
        Sep 2017       67.62845 30.73747 104.5194 11.20856 124.0483
        Oct 2017       67.62845 30.73747 104.5194 11.20856 124.0483
        Nov 2017       67.62845 30.73747 104.5194 11.20856 124.0483
        Dec 2017       67.62845 30.73747 104.5194 11.20856 124.0483
        Jan 2018       67.62845 30.73747 104.5194 11.20856 124.0483
        Feb 2018       67.62845 30.73747 104.5194 11.20856 124.0483
        Mar 2018       67.62845 30.73747 104.5194 11.20856 124.0483
        Apr 2018       67.62845 30.73747 104.5194 11.20856 124.0483
        May 2018       67.62845 30.73747 104.5194 11.20856 124.0483
        Jun 2018       67.62845 30.73747 104.5194 11.20856 124.0483
        Jul 2018       67.62845 30.73747 104.5194 11.20856 124.0484
        Aug 2018       67.62845 30.73747 104.5194 11.20856 124.0484
        Sep 2018       67.62845 30.73747 104.5194 11.20856 124.0484
        Oct 2018       67.62845 30.73747 104.5194 11.20856 124.0484
        Nov 2018       67.62845 30.73747 104.5194 11.20856 124.0484
        Dec 2018       67.62845 30.73747 104.5194 11.20856 124.0484
        Jan 2019       67.62845 30.73747 104.5194 11.20856 124.0484
        Feb 2019       67.62845 30.73747 104.5194 11.20856 124.0484
        Mar 2019       67.62845 30.73747 104.5194 11.20856 124.0484

        However, as you can see, the first "column" contains the dates
        for the
        forecasts, but it appears as a field with no name.

        What I would like to do is to get those dates, add them as an
        additional
        column to the forecasts so that when I use the
        data.frame(Forecasts) I can
        have a result in this fashion:

        Date              Point Forecast    Lo 80         Hi 80       Lo 95
            Hi 95
        Apr 2017       67.62845           30.73747 104.5194 11.20856
          124.0483

        Is there a way to do this?

        Here is the sessionInfo() output:

            sessionInfo()

        R version 3.3.3 (2017-03-06)
        Platform: x86_64-w64-mingw32/x64 (64-bit)
        Running under: Windows 8.1 x64 (build 9600)

        locale:
        [1] LC_COLLATE=English_United States.1252  LC_CTYPE=English_United
        States.1252    LC_MONETARY=English_United States.1252 LC_NUMERIC=C
                            LC_TIME=English_United States.1252

        attached base packages:
        [1] stats4    splines   stats     graphics  grDevices utils
          datasets
           methods   base

        other attached packages:
        [1] tseries_0.10-35 forecast_8.0    Rcmdr_2.3-2     RcmdrMisc_1.0-5
        sandwich_2.3-4  car_2.1-3

        loaded via a namespace (and not attached):
           [1] Rcpp_0.12.7         lattice_0.20-34     tcltk2_1.2-11
        class_7.3-14        zoo_1.7-13          lmtest_0.9-35
          relimp_1.0-5
               assertthat_0.1      digest_0.6.11       R6_2.2.0
           plyr_1.8.4

        [12] acepack_1.4.1       MatrixModels_0.4-1  e1071_1.6-7
          httr_1.2.1
                   ggplot2_2.2.0       lazyeval_0.2.0      AzureML_0.2.13
           curl_2.2            uuid_0.1-2          readxl_0.1.1
        minqa_1.2.4

        [23] data.table_1.10.4   SparseM_1.74        fracdiff_1.4-2
           nloptr_1.0.4        rpart_4.1-10        Matrix_1.2-8
        lme4_1.1-12
                stringr_1.1.0       foreign_0.8-67      munsell_0.4.3
        base64enc_0.1-3
        [34] mgcv_1.8-17         htmltools_0.3.5     tcltk_3.3.3
        nnet_7.3-12         tibble_1.2          gridExtra_2.2.1
          htmlTable_1.7
              quadprog_1.5-5      Hmisc_4.0-2         codetools_0.2-15
           XML_3.98-1.4
        [45] MASS_7.3-45         grid_3.3.3          nlme_3.1-131
           jsonlite_1.1        gtable_0.2.0        magrittr_1.5
        scales_0.4.1
               stringi_1.1.2       timeDate_3012.100   latticeExtra_0.6-28
        Formula_1.2-1
        [56] RColorBrewer_1.1-2  tools_3.3.3         abind_1.4-5
        parallel_3.3.3      pbkrtest_0.4-6      survival_2.40-1
        colorspace_1.3-0    cluster_2.0.5       miniCRAN_0.2.7
        knitr_1.15
               quantreg_5.29



        I have also attached the file that I used to train the model and
        generate
        forecasts.

        Any help will be greatly appreciated,

        Best regards,

        Paul
        ______________________________________________
        R-help@r-project.org <mailto:R-help@r-project.org> mailing list
        -- To UNSUBSCRIBE and more, see
        https://stat.ethz.ch/mailman/listinfo/r-help
        <https://stat.ethz.ch/mailman/listinfo/r-help>
        PLEASE do read the posting guide
        http://www.R-project.org/posting-guide.html
        <http://www.R-project.org/posting-guide.html>
        and provide commented, minimal, self-contained, reproducible code.



______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to