Hello, I have a data orig.raw that contains 8 predictors and 1 outcome variable. I'm trying to run simulation (bootstrap) and create, let's say, 10 confidence intervals for coefficients estimated by LASSO. I did it with regular function replicate, but now I want to do it by using parallel programming. Here is my code:
cl <- makeCluster(detectCores()) clusterEvalQ(cl,library(glmnet)) clusterEvalQ(cl,library(MASS)) clusterExport(cl,c("orig.raw")) pp=parSapply(cl,1:10,function(i,data=orig.raw,...){ library(parallel) cl <- makeCluster(detectCores()) clusterEvalQ(cl,library(glmnet)) clusterEvalQ(cl,library(MASS)) clusterExport(cl,c("orig.raw")) repl=parSapply(cl=cl,1:10,function(i,data=orig.raw,...){ s1=data[sample(nrow(data),size=500,replace=TRUE),] cross=cv.glmnet(s1[,1:8],s1[,9]) penalty <- cross$lambda.min fit=glmnet(s1[,1:8],s1[,9],alpha=1,lambda=penalty) coe=coef(fit) m=as(coe, "matrix") return(m) }) stopCluster(cl) mr=t(matrix(repl,nrow = 9,ncol=10)) means=colMeans(mr) std=apply(mr, 2, sd) lb=means-1.96*std; ub=means+1.96*std; ind=t(as.numeric({beta>lb & beta<ub})) return(ind)}) stopCluster(cl) And here is the error I'm getting Error in checkForRemoteErrors(val) : 8 nodes produced errors; first error: comparison (6) is possible only for atomic and list types If I run only function repl - it works and I get the matrix that contains coefficients from 10 runs. Can you please help me to solve the problem? Regards, Ariel [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.