I want to run MC simulation of AR1(auto-regression) matrix in R, which would be as residuals in linear mixed model.
AR1 matrix with the following character: ��r,��c is the auto-correlation parameter in the row and column direction. And I wrote one function in R ( under following). But I run the function, it seems only work for the first Row auto-corr. When setting different a set of Row auto-corr values, the simulated dataset would change with the same value. But it did not work for the second column auto-corr parameter, even if setting different col atuo-corr, the simulated dataset seemd no changed in col auto-corr value that nearly is zero all the time. Would someone please help me to find the questions that the R function codes somewhere got wrong? Thanks a lots. ####### simulation codes for AR1 model multi_norm <- function(data_num,Pr,Pc) { require(MASS) # data_num for row/col number; Pr for row auto-corr; Pc for colum auto-corr. V <- matrix(data=NA, nrow=data_num, ncol=data_num) R.mat=diag(data_num) C.mat=diag(data_num) set.seed(2016) means <- runif(1, min=0, max=1) means1=rep(means,data_num*data_num) # variance set.seed(2016) var <- runif(1, min=0, max=1) for (i in 1:data_num) { # a two-level nested loop to generate AR matrix for (j in 1:data_num) { if (i == j) { # covariances on the diagonal V[i,j] <- 1 #varsmodule[i] } else if(i<j){ # covariances R.mat[i,j]<- V[i,i]*(Pr^(j-i)) C.mat[i,j]<- V[i,i]*(Pc^(j-i)) }else {R.mat[i,j]=R.mat[j,i];C.mat[i,j]=C.mat[j,i]} } } V=var*kronecker(C.mat,R.mat) # simulate multivariate normal distribution # given means and covariance matrix X <- t(mvrnorm(n = data_num, means1, V)) aam=X[1:data_num,] aad=data.frame() for(i in 1:data_num){ for(j in 1:data_num){ aad[j+data_num*(i-1),1]=i aad[j+data_num*(i-1),2]=j aad[j+data_num*(i-1),3]=aam[i,j] } } names(aad)=c('Row','Col','y') for(i in 1:2) aad[,i]=factor(aad[,i]) return(aad) } The simulation results as following: > aam=multi_norm(30,0.6,0.01) > mm2=asreml(y~1,rcov=~ar1(Row):ar1(Col),data=aam,trace=F,maxit=30) > summary(mm2)$varcomp gamma component std.error z.ratio constraint R!variance 1.00000000 0.16267855 0.01038210 15.6691353 Positive R!Row.cor 0.55811722 0.55811722 0.02734902 20.4072085 Unconstrained R!Col.cor 0.01735573 0.01735573 0.03368048 0.5153055 Unconstrained > aam=multi_norm(30,0.6,0.3) > mm2=asreml(y~1,rcov=~ar1(Row):ar1(Col),data=aam,trace=F,maxit=30) > summary(mm2)$varcomp gamma component std.error z.ratio constraint R!variance 1.00000000 0.17491494 0.01199393 14.583624 Positive R!Row.cor 0.62097328 0.62097328 0.02534858 24.497358 Unconstrained R!Col.cor -0.03744104 -0.03744104 0.03380648 -1.107511 Unconstrained > aam=multi_norm(30,0.6,0.6) > mm2=asreml(y~1,rcov=~ar1(Row):ar1(Col),data=aam,trace=F,maxit=30) > summary(mm2)$varcomp gamma component std.error z.ratio constraint R!variance 1.000000000 0.180804271 0.01227539 14.7289994 Positive R!Row.cor 0.581797580 0.581797580 0.02861663 20.3307541 Unconstrained R!Col.cor 0.007598536 0.007598536 0.03448510 0.2203426 Unconstrained > aam=multi_norm(30,0.3,0.6) > mm2=asreml(y~1,rcov=~ar1(Row):ar1(Col),data=aam,trace=F,maxit=30) > summary(mm2)$varcomp gamma component std.error z.ratio constraint R!variance 1.000000000 0.177888691 0.008979462 19.8106171 Positive R!Row.cor 0.269572147 0.269572147 0.031823892 8.4707474 Unconstrained R!Col.cor -0.004159379 -0.004159379 0.035830577 -0.1160846 Unconstrained > aam=multi_norm(30,0.9,0.6) > mm2=asreml(y~1,rcov=~ar1(Row):ar1(Col),data=aam,trace=F,maxit=30) > summary(mm2)$varcomp gamma component std.error z.ratio constraint R!variance 1.00000000 0.19194479 0.02674158 7.1777654 Positive R!Row.cor 0.91213667 0.91213667 0.01247011 73.1458677 Unconstrained R!Col.cor 0.01203907 0.01203907 0.03474589 0.3464891 Unconstrained [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.