On Mon, 7 Nov 2016, danilo.car...@uniparthenope.it wrote:

I need a function for R software which computes a mixture of Negative
Binomial distributions with at least three components.

The package "countreg" on R-Forge provides a driver FLXMRnegbin() that can be combined with the "flexmix" package (i.e., functions flexmix() and stepFlexmix()). The manual page provides some worked illustrations in example("FLXMRnegbin", package = "countreg").

Note that the driver is mainly designed for negative binomial _regression_ models. But if you just regress on a constant (y ~ 1) you can also get negative binomial mixture distributions without covariates.

I found on another site the following function "mixnbinom". It works very
well, but it computes a mixture of only two components:


mixnbinom=function(y,k1,mu1,k2,mu2,prob,eps=1/100000)
{
 new.parms=c(k1,mu1,k2,mu2,prob)
 err=1
 iter=1
 maxiter=100
 hist(y,probability=T,nclass=30,col="lightgrey",main="The EM algorithm")
 xvals=seq(min(y),max(y),1)
 lines(xvals,prob*dnbinom(xvals,size=k1,mu=mu1)+
           (1-prob)*dnbinom(xvals,size=k2,mu=mu2),col="green")
 while(err>eps){
     if(iter<=maxiter){
         lines(xvals,prob*dnbinom(xvals,size=k1,mu=mu1)+
                   (1-prob)*dnbinom(xvals,size=k2,mu=mu2),lty=3)
     }
     bayes=(prob*dnbinom(y,size=k1,mu=mu1))/((prob*
     dnbinom(y,size=k1,mu=mu1))+((1-prob)*dnbinom(y,size=k2,mu=mu2)))
     mu1=sum(bayes*y)/sum(bayes)
     mu2=sum((1-bayes)*y)/sum((1-bayes))
     var1=sum(bayes*(y-mu1)^2)/sum(bayes)
     var2=sum((1-bayes)*(y-mu2)^2)/sum((1-bayes))
     k1=abs(mu1/((var1/mu1)-1))
     k2=abs(mu2/((var2/mu2)-1))
     prob=mean(bayes)
     old.parms=new.parms
     new.parms=c(k1,mu1,k2,mu2,prob)
     err=max(abs((old.parms-new.parms)/new.parms))
     iter=iter+1
 }
 lines(xvals,prob*dnbinom(xvals,size=k1,mu=mu1)+
           (1-prob)*dnbinom(xvals,size=k2,mu=mu2),col="red")
 print(list(k1=k1,mu1=mu1,k2=k2,mu2=mu2,p=prob,iter=iter,err=err))
}


I would be grateful if someone can modify the previous function to
model a three-component mixture instead of a two-component one.

I also tried to look for a package which does the same job: I have
used the package "mixdist", but I am not able to set up a suitable set
of starting parameters for the function mix (they always converge to
zero). Hereafter, I found the package "DEXUS", but the related function
does not provide good estimates for the model, even in the event that
I already know what results I have to expect.

Any help is highly appreciated.


Danilo Carità

-------------------------------------------------------------
Danilo Carità

PhD Candidate
University of Naples "Parthenope"
Dipartimento di Studi Aziendali e Quantitativi
via G. Parisi, 13, 80132 Napoli - Italy

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to