> On Oct 28, 2016, at 7:00 AM, Be Water <bwa...@outlook.com> wrote: > > How to add newdata to be predicted in an ARMA GARCH model with the fGARCH > package? > > ## R version 3.3.1 (2016-06-21) > ## Platform: x86_64-w64-mingw32/x64 (64-bit) > ## Running under: Windows >= 8 x64 (build 9200) > > library(fGarch) > > ## Data simulation > set.seed(345) > ar.sim <- arima.sim(model=list(ar=c(.9,-.2)), n=1000) > tail(ar.sim) > plot(ar.sim) > > ## Model fit > model = garchFit( ~ arma(1, 2) + garch(1, 1), Data=ar.sim) > print(model) > help(garchFit,package="fGarch") > > ##QUESTION 1: How to add newdata to be predicted? > newdata <- data.frame(x= -0.3) > newdata <- -0.3 > predict(model, newdata = newdata, n.ahead=1)[1,1] > > ##QUESTION 2: If this is the correct way, why do I get the same result with > different newdata? > predict(model, newdata= -1.035, n.ahead=1) > predict(model, newdata= 0.124, n.ahead=1) > help(predict, package="fGarch") >
Try this: help('predict-methods', pac=fGarch) Generally there is a fallback to the original data when the argument to `newdata` is malformed. I don't see any dependence on a varaible named either "x" in the construction of `model`, nor do I even see an argument named `newdata` in the predict method for fGarch. Look at the examples on that help page. I think you are incorrectly generalizing expectations about model objects to this package. > > [[alternative HTML version deleted]] > And learn to use plain text. -- David. > ______________________________________________ > R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.