Hello Dan,

many thanks for your reply. I have really 6 objects, I am sorry for my
mistake in my previous mail. So I will try use ROCK algorithm for next
data set and I will more study output yet.

-- 
Best Regards
Matej Zuzcak


Dňa 17.8.2016 o 1:58 Nordlund, Dan (DSHS/RDA) napísal(a):
> You should really go to the help page for the function rockCluster() and run 
> the first example and study the output.  It should become clear that what you 
> are calling the <NA> cluster is not a cluster at all.  It is an indicator of 
> which objects *did not* cluster with any other objects ). 
>
> In addition, you state you have only four objects.  This is confusing since 
> you have a column in your data  named 'objects' which implies that you have 6 
> objects (and that is how many objects are in your cluster results).
>
> The function, fitted() should be used with the data you are clustering.   If 
> you want to "predict" what clusters NEW data would fall into, then use 
> predict().  It is not surprising that predict() used on the original data 
> would predict the fitted results.
>
>
> Dan
>
> Daniel Nordlund, PhD
> Research and Data Analysis Division
> Services & Enterprise Support Administration
> Washington State Department of Social and Health Services
>
>> -----Original Message-----
>> From: R-help [mailto:r-help-boun...@r-project.org] On Behalf Of Matej
>> Zuzcák
>> Sent: Tuesday, August 16, 2016 1:42 PM
>> To: PIKAL Petr
>> Cc: r-help@r-project.org
>> Subject: Re: [R] Need help with use of ROCK algorithm in R for binary data
>>
>> Hi,
>>
>> thank you very much for your reply. :-)
>>
>> - So I have really only four objects in this data set. It looks this:
>>
>> objects cat1      cat2     cat3      cat4     ...
>> A           TRUE    FALSE   FALSE   FALSE
>> B           TRUE    FALSE   TRUE    FALSE
>> C           TRUE    FALSE   FALSE   FALSE
>> D           FALSE   TRUE    TRUE    TRUE
>> E           TRUE    TRUE    TRUE    TRUE
>> F           TRUE    FALSE   TRUE    FALSE
>>
>> - I have modified standard separator for CSV file from comma to | because I
>> do other specific parsing and etc.  Original data have integer values 1 
>> (TRUE)
>> and 0 (FALSE).
>>
>> - Now I use this procedure for convert 1 and 0 on TRUE/FALSE coding (see
>> above) without duplicities:
>>
>> dummyVar <- db[-1] > 0
>> x <- dummyVar
>>
>> - Result is the same as in my previous mail. Result is the same (in my last
>> message) too when I use predict or fitted (rp <- predict(rc, x) / rf <-
>> fitted(rc)). Do you know what is different between predict and fitted please?
>> And what value of beta and theta parameter is optimal please? So my
>> clusters are: ABC - cluster 1, DEF - cluster NA. What is means with "NA"? So
>> these objects (ABC, DEF) are the most similar. I will apply this algorithm on
>> next set of data, it includes much more objects... I will have question about
>> Proximus algorithm yet (in next mail), because it will be second algorithm 
>> for
>> binary clustering of my data sets...
>>
>> Thanks.
>>
>> --
>>
>> Best Regards
>> Matej Zuzcak
>>
>> Dňa 16.8.2016 o 8:42 PIKAL Petr napísal(a):
>>
>>> Hi
>>>
>>> see in line
>>>
>>>> -----Original Message-----
>>>> From: R-help [mailto:r-help-boun...@r-project.org] On Behalf Of Matej
>>>> Zuzčák
>>>> Sent: Monday, August 15, 2016 11:23 AM
>>>> To: r-help@r-project.org
>>>> Subject: [R] Need help with use of ROCK algorithm in R for binary
>>>> data
>>>>
>>>> Dear list members,
>>>>
>>>> I have one appeal for you.
>>>>
>>>> I need use ROCK (RockCluster) algorithm for binary data in R. My
>>>> binary data looks this:
>>>>
>>>> |objects cat1 cat2 cat3 cat4 ...A TRUE FALSE FALSE FALSE B TRUE FALSE
>>>> TRUE FALSE C TRUE FALSE FALSE FALSE D FALSE TRUE TRUE TRUE E TRUE
>>>> TRUE TRUE TRUE F TRUE FALSE TRUE FALSE|
>>> Better to show your data with dput command. Just copy the output of
>>>
>>> dput(header(db, 20))
>>>
>>> to your mail.
>>>> Now I need clasify these objects A-F to clusters. I apply this
>>>> procedure
>>>> https://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R/Clustering/
>>>> Ro
>>>> ckCluster#Dataset
>>>> But I have several problems.
>>>>
>>>>  1. I import data from CSV file. |db <- read.csv(file="file.csv",
>>>>     header=TRUE, sep="|")| Fields are 1 (TRUE) and 0 (FALSE).
>>> Hm. Why do you use csv if you set the separator to "|". I would use
>> read.table.
>>>>  2. I convert this data: |x <- as.dummy(db[-1]|). After this step all
>>>>     columns in x are duplicated with 1 and 0. Why? It is correct please?
>>> Hm. Strange. In help page the result is TRUE/FALSE coding. Again posting
>> real data would help us to understand your problem.
>>> x <- as.integer(sample(3,10,rep=TRUE))
>>>> x
>>>  [1] 1 1 1 3 1 3 1 3 2 2
>>>> as.dummy(x)
>>>        [,1]  [,2]  [,3]
>>>  [1,]  TRUE FALSE FALSE
>>>  [2,]  TRUE FALSE FALSE
>>>  [3,]  TRUE FALSE FALSE
>>>  [4,] FALSE FALSE  TRUE
>>>  [5,]  TRUE FALSE FALSE
>>>  [6,] FALSE FALSE  TRUE
>>>  [7,]  TRUE FALSE FALSE
>>>  [8,] FALSE FALSE  TRUE
>>>  [9,] FALSE  TRUE FALSE
>>> [10,] FALSE  TRUE FALSE
>>> attr(,"levels")
>>> [1] "1" "2" "3"
>>>
>>> As I understand from help page, each columns is repeated the
>> levels(column) times and each column in result has coding T/F based on that
>> particular factor level.
>>>>  3. |rc <- rockCluster(x, n=4, debug=TRUE)|  4. |rf <- fitted(rc)|
>>>> Why |fitted| and when rather use |predict(rc, x)|?
>>>>  5. |table(db$objects, rf$cl)| After I get this output:
>>>>
>>>> |    1   NA
>>>> A   1    0
>>>> B   1    0
>>>> C   1    0
>>>> D   0    1
>>>> E   0    1
>>>> F   0    1
>>>> |
>>>>
>>>> What way I can read this output? What objects are in clusters with other?
>>>> What objects are the most similar please?
>>> There are only 2 clusters with levels 1 and NA. ABC belongs to cluster 1, 
>>> DEF
>> belongs to cluster NA. An what is the most weird, you have only 6 values in
>> your db data ???
>>> So again presenting your data either by dput or str is vital for evaluating
>> your problem.
>>> And BTW do not post in HTML, your messages are more or less scrambled.
>>>
>>> Cheers
>>> Petr
>>>
>>>
>>>> Many thanks for your help.
>>>>
>>>> --
>>>> Best Regards
>>>> Matej Zuzcak
>>>>
>>>>
>>>>       [[alternative HTML version deleted]]
>>>>
>>>> ______________________________________________
>>>> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
>>>> https://stat.ethz.ch/mailman/listinfo/r-help
>>>> PLEASE do read the posting guide http://www.R-project.org/posting-
>>>> guide.html and provide commented, minimal, self-contained,
>>>> reproducible code.
>>> ________________________________
>>> Tento e-mail a jakékoliv k němu připojené dokumenty jsou důvěrné a jsou
>> určeny pouze jeho adresátům.
>>> Jestliže jste obdržel(a) tento e-mail omylem, informujte laskavě
>> neprodleně jeho odesílatele. Obsah tohoto emailu i s přílohami a jeho kopie
>> vymažte ze svého systému.
>>> Nejste-li zamýšleným adresátem tohoto emailu, nejste oprávněni tento
>> email jakkoliv užívat, rozšiřovat, kopírovat či zveřejňovat.
>>> Odesílatel e-mailu neodpovídá za eventuální škodu způsobenou
>> modifikacemi či zpožděním přenosu e-mailu.
>>> V případě, že je tento e-mail součástí obchodního jednání:
>>> - vyhrazuje si odesílatel právo ukončit kdykoliv jednání o uzavření smlouvy,
>> a to z jakéhokoliv důvodu i bez uvedení důvodu.
>>> - a obsahuje-li nabídku, je adresát oprávněn nabídku bezodkladně
>> přijmout; Odesílatel tohoto e-mailu (nabídky) vylučuje přijetí nabídky ze
>> strany příjemce s dodatkem či odchylkou.
>>> - trvá odesílatel na tom, že příslušná smlouva je uzavřena teprve výslovným
>> dosažením shody na všech jejích náležitostech.
>>> - odesílatel tohoto emailu informuje, že není oprávněn uzavírat za
>> společnost žádné smlouvy s výjimkou případů, kdy k tomu byl písemně
>> zmocněn nebo písemně pověřen a takové pověření nebo plná moc byly
>> adresátovi tohoto emailu případně osobě, kterou adresát zastupuje,
>> předloženy nebo jejich existence je adresátovi či osobě jím zastoupené
>> známá.
>>> This e-mail and any documents attached to it may be confidential and are
>> intended only for its intended recipients.
>>> If you received this e-mail by mistake, please immediately inform its
>> sender. Delete the contents of this e-mail with all attachments and its 
>> copies
>> from your system.
>>> If you are not the intended recipient of this e-mail, you are not authorized
>> to use, disseminate, copy or disclose this e-mail in any manner.
>>> The sender of this e-mail shall not be liable for any possible damage caused
>> by modifications of the e-mail or by delay with transfer of the email.
>>> In case that this e-mail forms part of business dealings:
>>> - the sender reserves the right to end negotiations about entering into a
>> contract in any time, for any reason, and without stating any reasoning.
>>> - if the e-mail contains an offer, the recipient is entitled to immediately
>> accept such offer; The sender of this e-mail (offer) excludes any acceptance
>> of the offer on the part of the recipient containing any amendment or
>> variation.
>>> - the sender insists on that the respective contract is concluded only upon
>> an express mutual agreement on all its aspects.
>>> - the sender of this e-mail informs that he/she is not authorized to enter
>> into any contracts on behalf of the company except for cases in which he/she
>> is expressly authorized to do so in writing, and such authorization or power 
>> of
>> attorney is submitted to the recipient or the person represented by the
>> recipient, or the existence of such authorization is known to the recipient 
>> of
>> the person represented by the recipient.
>> ______________________________________________
>> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
>> https://stat.ethz.ch/mailman/listinfo/r-help
>> PLEASE do read the posting guide http://www.R-project.org/posting-
>> guide.html
>> and provide commented, minimal, self-contained, reproducible code.
> ______________________________________________
> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
>

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to