Hi all,
thanks for the suggestions, I did some timing tests, see below.
Unfortunately the aggregate.nx.ny.array.apply, does not produce the
expected result.
So the fastest seems to be the aggregate.nx.ny.expand.grid, though the
double for loop is not that much slower.
many thanks
Peter
tst=matrix(1:(1440*360),ncol=1440,nrow=360)
system.time( {for(i in 1:10)
tst_2x2=aggregate.nx.ny.forloop(tst,2,2,mean,na.rm=T)})
user system elapsed
11.227 0.073 11.371
system.time( {for(i in 1:10)
tst_2x2=aggregate.nx.ny.interaction(tst,2,2,mean,na.rm=T)})
user system elapsed
26.354 0.475 26.880
system.time( {for(i in 1:10)
tst_2x2=aggregate.nx.ny.expand.grid(tst,2,2,mean,na.rm=T)})
user system elapsed
9.683 0.055 9.763
system.time( {for(i in 1:10)
tst_2x2=aggregate.nx.ny.array.apply(tst,2,2,mean,na.rm=T)})
user system elapsed
7.693 0.055 7.800
tst.small=matrix(1:(8*4),ncol=8,nrow=4)
aggregate.nx.ny.forloop = function(data,nx=2,ny=2, FUN=mean,...)
+ {
+ nlon=nrow(data)
+ nlat=ncol(data)
+ newdata=matrix(NA,nrow=nlon/nx,ncol=nlat/ny)
+ dim(newdata)
+ for(ilon in seq(1,nlon,nx)) {
+ for(ilat in seq(1,nlat,ny)) {
+ ilon_new=1+(ilon-1)/nx
+ ilat_new=1+(ilat-1)/ny
+ newdata[ilon_new,ilat_new] = FUN(data[ilon+0:1,ilat+0:1],...)
+ }
+ }
+ newdata
+ }
aggregate.nx.ny.forloop(tst.small)
[,1] [,2] [,3] [,4]
[1,] 3.5 11.5 19.5 27.5
[2,] 5.5 13.5 21.5 29.5
aggregate.nx.ny.interaction = function(data,nx=2,ny=2, FUN=mean,...)
+ {
+
+ nlon=nrow(data)
+ nlat=ncol(data)
+ newdata=matrix(NA,nrow=nlon/nx,ncol=nlat/ny)
+ newdata[] <- tapply( data, interaction( (row(data)+1) %/% 2,
(col(data)+1) %/% 2 ), FUN, ...)
+ newdata
+ }
aggregate.nx.ny.interaction(tst.small)
[,1] [,2] [,3] [,4]
[1,] 3.5 11.5 19.5 27.5
[2,] 5.5 13.5 21.5 29.5
aggregate.nx.ny.expand.grid = function(data,nx=2,ny=2, FUN=mean,...)
+ {
+ ilon <- seq(1,ncol(data),nx)
+ ilat <- seq(1,nrow(data),ny)
+ cells <- as.matrix(expand.grid(ilat, ilon))
+ blocks <- apply(cells, 1, function(x)
data[x[1]:(x[1]+1),x[2]:(x[2]+1)])
+ block.means <- colMeans(blocks)
+ matrix(block.means, nrow(data)/ny, ncol(data)/nx)
+ }
aggregate.nx.ny.expand.grid(tst.small)
[,1] [,2] [,3] [,4]
[1,] 3.5 11.5 19.5 27.5
[2,] 5.5 13.5 21.5 29.5
aggregate.nx.ny.array.apply = function(data,nx=2,ny=2, FUN=mean,...)
{
+ a <- array(data, dim = c(ny, nrow( data ) %/% ny, ncol( data ) %/%
nx))
+ apply( a, c(2, 3), FUN, ... )
+ }
aggregate.nx.ny.array.apply(tst.small)
[,1] [,2] [,3] [,4]
[1,] 1.5 5.5 9.5 13.5
[2,] 3.5 7.5 11.5 15.5
On 28 Jul 2016, at 00:26, David Winsemius <dwinsem...@comcast.net>
wrote:
On Jul 27, 2016, at 12:02 PM, Jeff Newmiller
<jdnew...@dcn.davis.ca.us> wrote:
An alternative (more compact, not necessarily faster, because apply
is still a for loop inside):
f <- function( m, nx, ny ) {
# redefine the dimensions of my
a <- array( m
, dim = c( ny
, nrow( m ) %/% ny
, ncol( m ) %/% nx )
)
# apply mean over dim 1
apply( a, c( 2, 3 ), FUN=mean )
}
f( tst, nx, ny )
Here's an apparently loopless strategy, although I suspect the code
for interaction (and maybe tapply as well?) uses a loop.
tst_2X2 <- matrix(NA, ,ncol=4,nrow=2)
tst_2x2[] <- tapply( tst, interaction( (row(tst)+1) %/% 2,
(col(tst)+1) %/% 2 ), mean)
tst_2x2
[,1] [,2] [,3] [,4]
[1,] 3.5 11.5 19.5 27.5
[2,] 5.5 13.5 21.5 29.5
--
David.
--
Sent from my phone. Please excuse my brevity.
On July 27, 2016 9:08:32 AM PDT, David L Carlson <dcarl...@tamu.edu>
wrote:
This should be faster. It uses apply() across the blocks.
ilon <- seq(1,8,nx)
ilat <- seq(1,4,ny)
cells <- as.matrix(expand.grid(ilat, ilon))
blocks <- apply(cells, 1, function(x) tst[x[1]:(x[1]+1),
x[2]:(x[2]+1)])
block.means <- colMeans(blocks)
tst_2x2 <- matrix(block.means, 2, 4)
tst_2x2
[,1] [,2] [,3] [,4]
[1,] 3.5 11.5 19.5 27.5
[2,] 5.5 13.5 21.5 29.5
-------------------------------------
David L Carlson
Department of Anthropology
Texas A&M University
College Station, TX 77840-4352
-----Original Message-----
From: R-help [mailto:r-help-boun...@r-poject.org] On Behalf Of
Anthoni,
Peter (IMK)
Sent: Wednesday, July 27, 2016 6:14 AM
To: r-help@r-project.org
Subject: [R] Aggregate matrix in a 2 by 2 manor
Hi all,
I need to aggregate some matrix data (1440x720) to a lower
dimension
(720x360) for lots of years and variables
I can do double for loop, but that will be slow. Anybody know a
quicker
way?
here an example with a smaller matrix size:
tst=matrix(1:(8*4),ncol=8,nrow=4)
tst_2x2=matrix(NA,ncol=4,nrow=2)
nx=2
ny=2
for(ilon in seq(1,8,nx)) {
for (ilat in seq(1,4,ny)) {
ilon_2x2=1+(ilon-1)/nx
ilat_2x2=1+(ilat-1)/ny
tst_2x2[ilat_2x2,ilon_2x2] = mean(tst[ilat+0:1,ilon+0:1])
}
}
tst
tst_2x2
tst
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 1 5 9 13 17 21 25 29
[2,] 2 6 10 14 18 22 26 30
[3,] 3 7 11 15 19 23 27 31
[4,] 4 8 12 16 20 24 28 32
tst_2x2
[,1] [,2] [,3] [,4]
[1,] 3.5 11.5 19.5 27.5
[2,] 5.5 13.5 21.5 29.5
I though a cast to 3d-array might do the trick and apply over the
new
dimension, but that does not work, since it casts the data along
the
row.
matrix(apply(array(tst,dim=c(nx,ny,8)),3,mean),nrow=nrow(tst)/ny)
[,1] [,2] [,3] [,4]
[1,] 2.5 10.5 18.5 26.5
[2,] 6.5 14.5 22.5 30.5
cheers
Peter
______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide
http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.
David Winsemius
Alameda, CA, USA