Hi David, Thanks for your response. rbind doesnot seem to work. Here is a reproducible example
Y<-matrix(1:40,ncol=2) Y1<-Y/60 # estimates of p #print(Y1) sigma2<- matrix(c(var(Y1[,1]),cov(Y1[,1],Y1[,2]),cov(Y1[,1],Y1[,2]),var(Y1[,2])),2,2) #print(sigma2) rho<-sigma2[1,2]/sqrt(sigma2[1,1]*sigma2[2,2]) #rho mean(Y1[,1]) mean(Y1[,2]) #within<-matrix(data=0,nrow=20,ncol=1) for (rate3 in 1:20){ rate<-Y1[i,] #print(rate) rate1<-rate/(1-rate) rate2<-log(rate1) Sigma11<-(1/(rate[1]*(1-rate[1]))^2)*sigma2[1,1] Sigma22<-(1/(rate[2]*(1-rate[2]))^2)*sigma2[2,2] Sigma12<-(1/((rate[1]*(1-rate[1]))*(rate[2]*(1-rate[2]))))*sigma2[1,2] Sigma2<-matrix(c(Sigma11,Sigma12,Sigma12,Sigma22),2,2) #print(Sigma2) rate3<-mvrnorm(1000, mu=c(rate2[1],rate2[2]), Sigma2) #print(rate3) x<-exp(rate3[,1])/(1+exp(rate3[,1])) y<-exp(rate3[,2])/(1+exp(rate3[,2])) print(x) # Need to be able to stack the x's to produce one matrix } Thanks Anamika On Wed, Jul 27, 2016 at 2:46 AM, David Winsemius <dwinsem...@comcast.net> wrote: > > > On Jul 26, 2016, at 8:07 PM, Anamika Chaudhuri <canam...@gmail.com> > wrote: > > > > I have 100 datasets with 20 rows and 2 columns in each dataset. > > I am looking for help to produce x and y below as 1000 X 20 matrix and > then > > repeat that across 100 datasets using R > > > > library(MASS) > > library(car) > > set.seed(1234) > > library(mixtools) > > library(sp) > > > > for (k in 1:1){ # k IS THE NO OF DATASETS > > Y <- read.csv(file=paste0("MVNfreq",k,".csv")) > > So this is not reproducible but from the description seems like > > do.call( rbind, .... # the list of dataframes might "work" assuming column > names are _all_ the same. > > -- > David. > > > > Y<-as.matrix(Y) > > Y <- ifelse(Y==0,Y+.5,Y) > > > > > > Y1<-Y/60 # estimates of p > > > > #print(Y1) > > > > > > > sigma2<-matrix(c(var(Y1[,1]),cov(Y1[,1],Y1[,2]),cov(Y1[,1],Y1[,2]),var(Y1[,2])),2,2) > > > > rho<-sigma2[1,2]/sqrt(sigma2[1,1]*sigma2[2,2]) > > mean(Y1[,1]) > > mean(Y1[,2]) > > > > #within<-matrix(data=0,nrow=20,ncol=1) > > > > for (rate3 in 1:20){ > > rate<-Y1[i,] > > #print(rate) > > rate1<-rate/(1-rate) > > rate2<-log(rate1) > > > > Sigma11<-(1/(rate[1]*(1-rate[1]))^2)*sigma2[1,1] > > Sigma22<-(1/(rate[2]*(1-rate[2]))^2)*sigma2[2,2] > > > > Sigma12<-(1/((rate[1]*(1-rate[1]))*(rate[2]*(1-rate[2]))))*sigma2[1,2] > > > > Sigma2<-matrix(c(Sigma11,Sigma12,Sigma12,Sigma22),2,2) > > > > rate3<-mvrnorm(1000, mu=c(rate2[1],rate2[2]), Sigma2) > > x<-exp(rate3[,1])/(1+exp(rate3[,1])) > > y<-exp(rate3[,2])/(1+exp(rate3[,2])) > > x<-as.data.frame(x) > > stack(x) # Need help to stack x into a single matrix > > print(x) > > print(y) > > } > > } > > > > [[alternative HTML version deleted]] > > > > ______________________________________________ > > R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > > https://stat.ethz.ch/mailman/listinfo/r-help > > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > > and provide commented, minimal, self-contained, reproducible code. > > David Winsemius > Alameda, CA, USA > > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.