> On Jul 21, 2016, at 2:22 PM, Faradj Koliev <farad...@gmail.com> wrote:
> 
> Dear all, 
> 
> I have two logistic regression models:
> 
> 
>   • model <- glm(Y ~ X1+X2+X3+X4, data = data, family = "binomial")
> 
> 
> 
>   • modelInteraction <- glm(Y ~ X1+X2+X3+X4+X1*X4, data = data, family = 
> "binomial")
> 
> To calculate the marginal effects (MEM approach) for these models, I used the 
> `mfx` package:
> 
> 
>   • a<- logitmfx(model, data=data, atmean=TRUE)
> 
> 
> 
>    •b<- logitmfx(modelInteraction, data=data, atmean=TRUE)
> 
> 
> What I want to do now is 1) plot all the results for "model" and 2) show the 
> result just for two variables: X1 and X2. 
> 3) I also want to plot the interaction term in ”modelInteraction”.

There is no longer a single "effect" for X1 in modelInteraction in contrast to 
the manner as there might be an "effect" for X2. There can only be predictions 
for combined situations with particular combinations of values for X1 and X4.

> model

Call:  glm(formula = Y ~ X1 + X2 + X3 + X4, family = "binomial", data = data)

Coefficients:
(Intercept)           X1           X2           X3           X4  
    -0.3601       1.3353       0.1056       0.2898      -0.3705  

Degrees of Freedom: 68 Total (i.e. Null);  64 Residual
Null Deviance:      66.78 
Residual Deviance: 62.27        AIC: 72.27


> modelInteraction

Call:  glm(formula = Y ~ X1 + X2 + X3 + X4 + X1 * X4, family = "binomial", 
    data = data)

Coefficients:
(Intercept)           X1           X2           X3           X4        X1:X4  
    90.0158     -90.0747       0.1183       0.3064     -15.3688      15.1593  

Degrees of Freedom: 68 Total (i.e. Null);  63 Residual
Null Deviance:      66.78 
Residual Deviance: 61.49        AIC: 73.49

Notice that a naive attempt to plot an X1  "effect" in modelInteraction might 
pick the -90.07 value which would then ignore both the much larger Intercept 
value and also ignore the fact that the interaction term has now split the X4 
(and X1) "effects" into multiple pieces.

You need to interpret the effects of X1 in the context of a specification of a 
particular X4 value and not forget that the Intercept should not be ignored. It 
appears to me that the estimates of the mfx package are essentially meaningless 
with the problem you have thrown at it.

> a
Call:
logitmfx(formula = model, data = data, atmean = TRUE)

Marginal Effects:
       dF/dx Std. Err.       z   P>|z|  
X1  0.147532  0.087865  1.6791 0.09314 .
X2  0.015085  0.193888  0.0778 0.93798  
X3  0.040309  0.063324  0.6366 0.52441  
X4 -0.050393  0.092947 -0.5422 0.58770  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

dF/dx is for discrete change for the following variables:

[1] "X1" "X2" "X4"
> b
Call:
logitmfx(formula = modelInteraction, data = data, atmean = TRUE)

Marginal Effects:
            dF/dx   Std. Err.         z  P>|z|    
X1    -1.0000e+00  1.2121e-07 -8.25e+06 <2e-16 ***
X2     6.5595e-03  8.1616e-01  8.00e-03 0.9936    
X3     1.6312e-02  2.0326e+00  8.00e-03 0.9936    
X4    -9.6831e-01  1.5806e+01 -6.13e-02 0.9511    
X1:X4  8.0703e-01  1.4572e+01  5.54e-02 0.9558    
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

dF/dx is for discrete change for the following variables:

[1] "X1" "X2" "X4"

I see no sensible interpretation of the phrase "X1 effect" in the comparison 
tables above. The "p-value" in the second table appears to be nonsense induced 
by throwing a model formulation that was not anticipated. There is a negligible 
improvement in the glm fits:

> anova(model,modelInteraction)
Analysis of Deviance Table

Model 1: Y ~ X1 + X2 + X3 + X4
Model 2: Y ~ X1 + X2 + X3 + X4 + X1 * X4
  Resid. Df Resid. Dev Df Deviance
1        64     62.274            
2        63     61.495  1  0.77908


So the notion that the "X1 effect" is now "highly significant" where it was 
before not even suggestive of significance seem to point to either an error in 
the underlying theory or a failure to anticipate and trap (and warn the user) 
that an erroneous model (or at least an unanticipated model) is being passed to 
a procedure.

At least the 'effects- package gives you a tiny warning about this issue, 
although I think it really should throw an informative error when a user 
attempts to estimate only a "main effect" in a model that has an interaction 
involving such a covariate:

> library(effects)

> effect('X1', model)

 X1 effect
X1
         0        0.2        0.4        0.6        0.8          1 
0.06706123 0.08582757 0.10923061 0.13805139 0.17299973 0.21459275 
> effect('X1', modelInteraction)
NOTE: X1 is not a high-order term in the model

 X1 effect
X1
           0          0.2          0.4          0.6          0.8            1 
0.0002418661 0.0009864740 0.0040142251 0.0161843996 0.0629206979 0.2151098752 
> effect('X1:X4', modelInteraction)

 X1*X4 effect
     X4
X1            6         6.2          6.4          6.6          6.8            7
  0   0.1100479 0.005686142 0.0002643982 1.223058e-05 5.656287e-07 2.615838e-08
  0.2 0.1285241 0.012352473 0.0010595321 8.994106e-05 7.628099e-06 6.469071e-07
  0.4 0.1495811 0.026625017 0.0042357682 6.610806e-04 1.028639e-04 1.599803e-05
  0.6 0.1734015 0.056446132 0.0167737545 4.841483e-03 1.385458e-03 3.954877e-04
  0.8 0.2001225 0.115698003 0.0640377838 3.454327e-02 1.836677e-02 9.689636e-03
  1   0.2298165 0.222481442 0.2153150766 2.083177e-01 2.014893e-01 1.948297e-01

-- 
David.



> 
> 
> I have been looking around for the solutions but haven't been able to find 
> any. I would appreciate any suggestions. 
> 
> A reproducible sample: 
> 
>> dput(data)
> structure(list(Y = c(0L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 
> 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 
> 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 
> 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 1L, 
> 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X1 = c(1L, 0L, 1L, 
> 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 
> 1L, 0L, 0L, 0L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
> 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 0L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 
> 0L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
> 1L, 0L), X2 = c(0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 
> 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
> 1L, 0L, 1L, 0L, 1L, 1L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 
> 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
> 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X3 = c(0L, 0L, 0L, 0L, 0L, 
> 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
> 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 1L, 2L, 2L, 3L, 4L, 5L, 0L, 0L, 
> 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 
> 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
> ), X4 = c(6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
> 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 6L, 6L, 6L, 6L, 6L, 6L, 
> 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 
> 7L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 
> 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L)), .Names = c("Y", "X1", "X2", 
> "X3", "X4"), row.names = c(NA, -69L), class = "data.frame")
> 
> 
> 
> 
>       [[alternative HTML version deleted]]
> 
> ______________________________________________
> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.

David Winsemius
Alameda, CA, USA

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to