Hi All,
For a non-linear minimization optimization problem that I have, I am
getting better objective function value in Excel(15) as compared to
nloptr (73).

the nloptr is setup as:

opts = list("algorithm"="NLOPT_LN_COBYLA",
            "xtol_rel"=1.0e-8, "maxeval"= 10000)
lb = vector("numeric",length= length(my.data.var))

result <- nloptr(my.data.var,eval_f = Error.func,lb=lb,
                 ub =
c(Inf,1,1,1,1,1,Inf,1,1,1,1,1,Inf,1,1,1,1,1,Inf,1,1,1,1,1),eval_g_ineq=constraint.func,opts
= opts)


As observed even with 10000 as maximum evaluations, the objective
function is way off as compared to Excel's GRG which solved it in 200
iterations.

Is there a way to improve the objective function value from nloptr? OR
is there any excel's GRG equivalent package in R.

Thanks for your time!

PD

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to