Hi All, For a non-linear minimization optimization problem that I have, I am getting better objective function value in Excel(15) as compared to nloptr (73).
the nloptr is setup as: opts = list("algorithm"="NLOPT_LN_COBYLA", "xtol_rel"=1.0e-8, "maxeval"= 10000) lb = vector("numeric",length= length(my.data.var)) result <- nloptr(my.data.var,eval_f = Error.func,lb=lb, ub = c(Inf,1,1,1,1,1,Inf,1,1,1,1,1,Inf,1,1,1,1,1,Inf,1,1,1,1,1),eval_g_ineq=constraint.func,opts = opts) As observed even with 10000 as maximum evaluations, the objective function is way off as compared to Excel's GRG which solved it in 200 iterations. Is there a way to improve the objective function value from nloptr? OR is there any excel's GRG equivalent package in R. Thanks for your time! PD ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.