Dear all, 

I use ”polr” command (library: MASS) to estimate an ordered logistic regression.

My model:   summary( model<- polr(y ~ x1+x2+x3+x4+x1*x2 ,data=mydata, Hess = 
TRUE))

But how do I get robust clustered standard errors? 

I’’ve tried   coeftest(resA, vcov=vcovHC(resA, cluster=lipton$ID)) and 
summary(a <- robcov(model,mydata$ID)). Neither works for me. So I wonder what 
am I doing wrong here? 


All suggestions are welcome – thank you! 
        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to