Hi, 

Thanks for your help.

I used the SparseM package 
http://www.econ.uiuc.edu/~roger/research/sparse/SparseM.pdf 
<http://www.econ.uiuc.edu/~roger/research/sparse/SparseM.pdf>
First of all, I create a class for sparse matrices stored in Compressed Sparse 
Row (CSR) with as.matrix.csr(matrix).
After that, I plot the non-zero entries of a matrix of class matrix.csr with 
image(m.csr)


This is my code:

library(SparseM)
data <- read.csv(pathCSV, header = FALSE, sep = ",")
numcol <- ncol(data)
dMatrix <- matrix(unlist(data), ncol = numcol, byrow = TRUE)
dMatrix.csr <- as.matrix.csr(dMatrix)
image(dMatrix.csr, col=c("white","blue"))

After clustering, I will have the same matrix but each row (vector) has a tag 
to represent a cluster id. So, how could I plot my matrix to show a different 
color for cluster id?

This is an example of my results:

213     0       0       0       0.213   0.3423  
345     0       0       0.32 0          0  
84      0       0.4     0       0.54            0  
84      0.86    0       0       0               0  
213     0       0.98 0  0               0.45  
345     0       0.57 0  0               0.4  

Cheers.

> On Jun 10, 2016, at 18:51, Amos Elberg <amos.elb...@gmail.com> wrote:
> 
> Sparse matrix visualization is a feature of my largeVis package:  
> https://github.com/elbamos/largeVis/tree/0.1.6 
> <https://github.com/elbamos/largeVis/tree/0.1.6>
> 
> 
> 
> On Thu, Jun 9, 2016 at 6:27 PM, FRANCISCO XAVIER SUMBA TORAL 
> <xavier.sumb...@ucuenca.ec <mailto:xavier.sumb...@ucuenca.ec>> wrote:
> Hi,
> 
> First of all, sorry for my question it could be so basic for a common user in 
> R, but I am starting with this new environment.
> 
> I have done a clustering job and I would like to visualize my vectors. I have 
> a matrix of TF-IDF weights of 4602 x 1817. I store the values in a CSV file. 
> How can I visualize my vectors in a 2D-space?
> 
> After that, I execute a clustering algorithm and I got a label for each 
> cluster. How can I visualize my vectors resulting base on a color or figure 
> for each cluster?
> 
> This is the code that I am having trying to accomplish my graphs:
> 
> data <- read.csv(pathFile,header = FALSE, sep = ",”)
> dMatrix <- matrix(unlist(data), ncol = 4602, byrow = TRUE) # Use a matrix to 
> use melt.
> # Graph my data
> ggplot(melt(dMatrix), aes(Var1,Var2, fill=value)) + geom_raster() + 
> scale_fill_gradient2(low='red', high=‘black', mid=‘white') + theme_bw() + 
> xlab("x1") + ylab("x2")
> 
> 
> Cheers.
>         [[alternative HTML version deleted]]
> 
> ______________________________________________
> R-help@r-project.org <mailto:R-help@r-project.org> mailing list -- To 
> UNSUBSCRIBE and more, see
> https://stat.ethz.ch/mailman/listinfo/r-help 
> <https://stat.ethz.ch/mailman/listinfo/r-help>
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html 
> <http://www.r-project.org/posting-guide.html>
> and provide commented, minimal, self-contained, reproducible code.
> 


        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to