You can make this much more readable with apply functions. result <- apply( all_combine1, 1, function(x){ p.value <- sapply( seq_len(nSims), function(sim){ gamma1 <- rgamma(x["m"], x["sp(skewness1.5)"], x["scp1"]) gamma2 <- rgamma(x["n"], x["scp1"], 1) gamma1 <- gamma1 - x["sp(skewness1.5)"] * x["scp1"] gamma2 <- gamma2 - x["sp(skewness1.5)"] c( equal = t.test(gamma1, gamma2, var.equal=TRUE)$p.value, unequal = t.test(gamma1,gamma2,var.equal=FALSE)$p.value, mann = wilcox.test(gamma1,gamma2)$p.value ) } ) rowMeans(p.value <= alpha) } ) cbind(all_combine1, t(result)) ir. Thierry Onkelinx Instituut voor natuur- en bosonderzoek / Research Institute for Nature and Forest team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance Kliniekstraat 25 1070 Anderlecht Belgium
To call in the statistician after the experiment is done may be no more than asking him to perform a post-mortem examination: he may be able to say what the experiment died of. ~ Sir Ronald Aylmer Fisher The plural of anecdote is not data. ~ Roger Brinner The combination of some data and an aching desire for an answer does not ensure that a reasonable answer can be extracted from a given body of data. ~ John Tukey 2016-04-18 9:05 GMT+02:00 tan sj <sj_style_1...@outlook.com>: > Hi, i am sorry, the output should be values between 0 and 0.1 and not > supposed to be 1.00, it is because they are type 1 error rate. And now i get > output 1.00 for several samples,rhis is no correct. The loop do not run for > every row. i do not know where is my mistake. As i use the same concept on > normal distribution setup, i get the result. > > Sent from my phone > > On Thierry Onkelinx <thierry.onkel...@inbo.be>, Apr 18, 2016 2:55 PM wrote: > Dear anonymous, > > The big mistake in the output might be obvious to you but not to > others. Please make clear what the correct output should be or at > least what is wrong with the current output. > > And please DO read the posting guide which asks you not to post in HTML. > ir. Thierry Onkelinx > Instituut voor natuur- en bosonderzoek / Research Institute for Nature > and Forest > team Biometrie & Kwaliteitszorg / team Biometrics & Quality Assurance > Kliniekstraat 25 > 1070 Anderlecht > Belgium > > To call in the statistician after the experiment is done may be no > more than asking him to perform a post-mortem examination: he may be > able to say what the experiment died of. ~ Sir Ronald Aylmer Fisher > The plural of anecdote is not data. ~ Roger Brinner > The combination of some data and an aching desire for an answer does > not ensure that a reasonable answer can be extracted from a given body > of data. ~ John Tukey > > > 2016-04-17 19:59 GMT+02:00 tan sj <sj_style_1...@outlook.com>: >> i have combined all the variables in a matrix, and i wish to conduct a >> simulation row by row. >> >> But i found out the code only works for the every first row after a cycle >> of nine samples. >> >> But after check out the code, i don know where is my mistake... >> >> can anyone pls help .... >> >> >> #For gamma disribution with equal skewness 1.5 >> >> #to evaluate the same R function on many different sets of data >> library(parallel) >> >> nSims<-100 >> alpha<-0.05 >> >> #set nrow =nsims because wan storing every p-value simulated >> #for gamma distribution with equal skewness >> matrix2_equal <-matrix(0,nrow=nSims,ncol=3) >> matrix5_unequal<-matrix(0,nrow=nSims,ncol=3) >> matrix8_mann <-matrix(0,nrow=nSims,ncol=3) >> >> # to ensure the reproducity of the result >> #here we declare the random seed generator >> set.seed(1) >> >> ## Put the samples sizes into matrix then use a loop for sample sizes >> >> sample_sizes<-matrix(c(10,10,10,25,25,25,25,50,25,100,50,25,50,100,100,25,100,100), >> nrow=2) >> >> #shape parameter for both gamma distribution for equal skewness >> #forty five cases for each skewness!! >> shp<-rep(16/9,each=5) >> >> #scale parameter for sample 1 >> #scale paramter for sample 2 set as constant 1 >> scp1<-c(1,1.5,2,2.5,3) >> >> #get all combinations with one row of the sample_sizes matrix >> ##(use expand.grid)to create a data frame from combination of data >> >> ss_sd1<- expand.grid(sample_sizes[2,],shp) >> scp1<-rep(scp1,9) >> >> std2<-rep(sd2,9) >> >> #create a matrix combining the forty five cases of combination of sample >> sizes,shape and scale parameter >> all_combine1 <- cbind(rep(sample_sizes[1,], 5),ss_sd1,scp1) >> >> # name the column samples 1 and 2 and standard deviation >> colnames(all_combine1) <- c("m", "n","sp(skewness1.5)","scp1") >> >> ##for the samples sizes into matrix then use a loop for sample sizes >> # this loop steps through the all_combine matrix >> for(ss in 1:nrow(all_combine1)) >> { >> #generate samples from the first column and second column >> m<-all_combine1[ss,1] >> n<-all_combine1[ss,2] >> >> for (sim in 1:nSims) >> { >> #generate 2 random samples from gamma distribution with equal >> skewness >> gamma1<-rgamma(m,all_combine1[ss,3],all_combine1[ss,4]) >> gamma2<-rgamma(n,all_combine1[ss,4],1) >> >> # minus the population mean to ensure that there is no lose of >> equality of mean >> gamma1<-gamma1-all_combine1[ss,3]*all_combine1[ss,4] >> gamma2<-gamma2-all_combine1[ss,3] >> >> #extract p-value out and store every p-value into matrix >> matrix2_equal[sim,1]<-t.test(gamma1,gamma2,var.equal=TRUE)$p.value >> >> matrix5_unequal[sim,2]<-t.test(gamma1,gamma2,var.equal=FALSE)$p.value >> matrix8_mann[sim,3] <-wilcox.test(gamma1,gamma2)$p.value >> } >> ##store the result >> equal[ss]<- mean(matrix2_equal[,1]<=alpha) >> unequal[ss]<-mean(matrix5_unequal[,2]<=alpha) >> mann[ss]<- mean(matrix8_mann[,3]<=alpha) >> } >> >> g_equal<-cbind(all_combine1, equal, unequal, mann) >> >> It is my result but it show a very big mistake ....TT >> m n sp(skewness1.5) scp1 equal unequal mann >> 1 10 10 1.777778 1.0 0.36 0.34 0.34 >> 2 10 25 1.777778 1.5 0.84 0.87 0.90 >> 3 25 25 1.777778 2.0 1.00 1.00 1.00 >> 4 25 50 1.777778 2.5 1.00 1.00 1.00 >> 5 25 100 1.777778 3.0 1.00 1.00 1.00 >> 6 50 25 1.777778 1.0 0.77 0.77 0.84 >> 7 50 100 1.777778 1.5 1.00 1.00 1.00 >> 8 100 25 1.777778 2.0 1.00 1.00 1.00 >> 9 100 100 1.777778 2.5 1.00 1.00 1.00 >> 10 10 10 1.777778 3.0 1.00 1.00 1.00 >> 11 10 25 1.777778 1.0 0.48 0.30 0.55 >> 12 25 25 1.777778 1.5 0.99 0.99 1.00 >> 13 25 50 1.777778 2.0 1.00 1.00 1.00 >> 14 25 100 1.777778 2.5 1.00 1.00 1.00 >> 15 50 25 1.777778 3.0 1.00 1.00 1.00 >> 16 50 100 1.777778 1.0 0.97 0.97 1.00 >> 17 100 25 1.777778 1.5 1.00 1.00 1.00 >> 18 100 100 1.777778 2.0 1.00 1.00 1.00 >> 19 10 10 1.777778 2.5 1.00 1.00 1.00 >> 20 10 25 1.777778 3.0 1.00 1.00 1.00 >> 21 25 25 1.777778 1.0 0.63 0.63 0.71 >> 22 25 50 1.777778 1.5 0.99 0.99 0.99 >> 23 25 100 1.777778 2.0 1.00 1.00 1.00 >> 24 50 25 1.777778 2.5 1.00 1.00 1.00 >> 25 50 100 1.777778 3.0 1.00 1.00 1.00 >> 26 100 25 1.777778 1.0 0.83 0.90 0.88 >> 27 100 100 1.777778 1.5 1.00 1.00 1.00 >> 28 10 10 1.777778 2.0 1.00 1.00 1.00 >> 29 10 25 1.777778 2.5 1.00 1.00 1.00 >> 30 25 25 1.777778 3.0 1.00 1.00 1.00 >> 31 25 50 1.777778 1.0 0.71 0.66 0.81 >> 32 25 100 1.777778 1.5 1.00 1.00 1.00 >> 33 50 25 1.777778 2.0 1.00 1.00 1.00 >> 34 50 100 1.777778 2.5 1.00 1.00 1.00 >> 35 100 25 1.777778 3.0 1.00 1.00 1.00 >> 36 100 100 1.777778 1.0 0.99 0.99 1.00 >> 37 10 10 1.777778 1.5 0.65 0.65 0.71 >> 38 10 25 1.777778 2.0 1.00 1.00 1.00 >> 39 25 25 1.777778 2.5 1.00 1.00 1.00 >> 40 25 50 1.777778 3.0 1.00 1.00 1.00 >> 41 25 100 1.777778 1.0 0.90 0.89 0.96 >> 42 50 25 1.777778 1.5 0.99 0.99 1.00 >> 43 50 100 1.777778 2.0 1.00 1.00 1.00 >> 44 100 25 1.777778 2.5 1.00 1.00 1.00 >> 45 100 100 1.777778 3.0 1.00 1.00 1.00 >>> >> >> >> >> [[alternative HTML version deleted]] >> >> ______________________________________________ >> R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see >> https://stat.ethz.ch/mailman/listinfo/r-help >> PLEASE do read the posting guide >> http://www.R-project.org/posting-guide.html >> and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.