dear all attached you will find a csv datasets, there are many steps before these they work properly. but I have errors in these steps I guess. any help appreciated.
Step1: convert the data from continuous to categorical ##nautodata is the normalized data. I did it in the previous steps. MPGCat= c(0,10,15,20,25,30, 35, 40) MPG <- cut(nautodata$mydata.MPG, MPGCat,labels = c(1:7)) nautodata = data.frame(MPG, nautodata[2:7]) nautodata Step 2: divided into 10 folds: as follow fold1= nautodata[1:39,] fold2= nautodata[40:79,] fold3= nautodata[80:119,] fold4= nautodata[120:159,] fold5= nautodata[160:199,] fold6= nautodata[200:139,] fold7= nautodata[240:279,] fold8= nautodata[280:319,] fold9= nautodata[320:359,] fold10= nautodata[360:398,] datafolds= list(fold1, fold2, fold3, fold4, fold5,fold6,fold7,fold8,fold9,fold10) step3: ##conduct 10-fold cross validation on KNN KNNFoldError= c(0,0,0,0,0,0,0,0,0,0) MGFoldError= c(0,0,0,0,0,0,0,0,0,0) for (i in 1:10) { trainData = NULL for(j in 1:10) { if(i !=j) { trainData = rbind(trainData, datafolds[[j]]) } else testData = datafolds[[j]] } #print (trainData) #print(testData) targetData = trainData$MPG testTargetData = testData$MPG trainData$MPG= NULL testData$MPG = NULL M1 = knn(train=trainData, test=testData, cl=targetData, k=20) M2 = MajorityGuessing(testData,MPGCat) print(table(testTargetData,M1)) print(testTargetData) print(M1) print(M2) KNNFoldError[i] = round(mean(testTargetData != M1), 3) MGFoldError[i] = round(mean(testTargetData != M2), 3) print(KNNFoldError) print(MGFoldError) } ## these are the error I got: Quitting from lines 80-86 (l...@m.rmd) Error in cut.default(nautodata$mydata.MPG, MPGCat, labels = c(1:7)) : 'x' must be numeric Calls: <Anonymous> ... withCallingHandlers -> withVisible -> eval -> eval -> cut -> cut.default Execution halted ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.