Thanks a lot Ravi for the clarification and it makes sense - bug in my understanding acknowledged.
I'll change the objective function as suggested. Thanks, Rainer Ravi Varadhan <ravi.varad...@jhu.edu> writes: > Dear Rainer, > This is NOT a bug in auglag. I already mentioned that auglag() can > work with infeasible starting values, which also implies that the > function must be evaluable at infeasible values. A simple solution to > your problem would be to fix up your objective function such that it > evaluates to `Inf' or some large value, when the parameter values are > not in the constrained domain. constrOptim.nl() is a barrier method > so it forces the initial value and the subsequent iterates to be > feasible. > Best, > Ravi > ________________________________________ > From: Rainer M Krug <rai...@krugs.de> > Sent: Tuesday, October 6, 2015 9:20 AM > To: Ravi Varadhan > Cc: 'r-help@r-project.org' > Subject: Bug in auglag? > > Hi Ravi, > > I would like come back to your offer. I have a problem which possibly is > caused by a bug or by something I don't understand: > > My function to be minimised is executed even when an element in hin() is > negative. > > My hin looks as follow: > > hinMahat <- function(x, hauteur, na, zjoint, y, LAI, ...) { > if (x[1] < 0) { > cat(names(list(...)), "\n") > cat(..., "\n") > cat(x, "|", hauteur, LAI, y, "\n") > } > > h <- rep(NA, 8) > if (!missing(na)) { > x <- c(na, x ) > } > if (!missing(y)) { > x <- c(x, y) > } > if (!missing(zjoint)) { > x <- c(x[1], zjoint, x[2]) > } > > ## > dep <- hauteur * (0.05 + LAI^0.02 / 2) + (x[3] - 1)/20 > h[1] <- dep > h[2] <- hauteur - dep > ## if (h[2]==0) { > ## h[2] <- -1 > ## } > ## > z0 <- hauteur * (0.23 + LAI^0.25 / 10) + (x[3] - 1)/67 > h[3] <- z0 > ## if (h[3]==0) { > ## h[3] <- -1 > ## } > h[4] <- hauteur - z0 > ## > h[5] <- x[1] > ## > h[6] <- x[2] > h[7] <- hauteur - x[2] > ## > h[8] <- hauteur - dep - z0 > if (any(h<=0)) { > cat(h, "\n") > cat("\n") > } > return(h) > } > > the x contains up to three elements: c(na=, zjoint=, y=) and I fit these > three, unless one or two are specified explicitely. > > The values going into hin are: > > ,---- > | ... (z u ua za z0sol ) > | 3 11 17 23 29 37 0.315 0.422 0.458 0.556 1.567 1.747 1.747 37 0.001 > | > | x(na, zjoint): -8.875735 24.51316 > | hauteur: 28 > | na: 8.1 > | y: 3 > | > | the resulting hin() is: > | 16.09815 11.90185 11.19352 16.80648 -8.875735 24.51316 3.486843 0.708335 > `---- > > > Which is negative in element 5 as x[2]=na is negative. > > So I would expect that the function fn is not evaluated. But it is, and > raises an error: > > ,---- > | Error in wpLELMahat(z = z, ua = ua, na = ifelse(missing(na), par[1], na), : > | na has to be larger or equal than zero! > `---- > > Is this a misunderstanding on my part, or is it an error in the function > auglag? > > > Below is the function which is doing the minimisation. > > If I replace auglag() with constrOptim.nl(), the optimisation is working > as expected. > > So I think this is a bug in auglag? > > Let me know if you need further information. > > Cheers, > > Rainer > > --8<---------------cut here---------------start------------->8--- > fitAuglag.wpLEL.mahat.single <- function( > z, > u, > LAI, > initial = c(na=9, zjoint=0.2*2, y=3), > na, zjoint, y, > h = 28, > za = 37, > z0sol = 0.001, > hin, > ... > ) { > if (missing(hin)) { > hin <- hinMahat > } > > wpLELMin <- function(par, na, zjoint, y, z, u, ua, hauteur, za, z0sol, > LAI) { > result <- NA > try({ > p <- wpLELMahat( > z = z, > ua = ua, > na = ifelse(missing(na), par[1], na), > zjoint = ifelse(missing(zjoint), par[2], zjoint), > h = hauteur, > za = za, > z0sol = z0sol, > LAI = LAI, > y = ifelse(missing(y), par[3], y) > ) > result <- sum( ( (p$u - u)^2 ) / length(u) ) > }, > silent = FALSE > ) > ## cat("From wpLELMin", par, "\n") > return( result ) > } > > ua <- u[length(u)] > result <- list() > result$method <- "fitAuglag.wpLEL.mahat.single" > result$initial <- initial > result$dot <- list(...) > result$z <- z > result$u <- u > > result$fit <- auglag( > par = initial, > fn = wpLELMin, > hin = hin, > na = na, > zjoint = zjoint, > y = y, > ## > z = z, > u = u, > ua = ua, > hauteur = h, > za = za, > z0sol = z0sol, > LAI = LAI, > ... > ) > result$wp <- wpLELMahat( > z = z, > ua = ua, > na = ifelse ( missing(na), result$fit$par["na"], na), > zjoint = ifelse ( missing(zjoint), result$fit$par["zjoint"], zjoint), > h = h, > za = za, > z0sol = z0sol, > LAI = LAI, > y = ifelse ( missing(y), result$fit$par["y"], y) > ) > > class(result) <- c(class(result), "wpLELFit") > return(result) > } > #+end_src--8<---------------cut here---------------end--------------->8--- > > > > Ravi Varadhan <ravi.varad...@jhu.edu> writes: > >> I would recommend that you use auglag() rather than constrOptim.nl() >> in the package "alabama." It is a better algorithm, and it does not >> require feasible starting values. >> Best, >> Ravi >> >> -----Original Message----- >> From: Rainer M Krug [mailto:rai...@krugs.de] >> Sent: Thursday, October 01, 2015 3:37 AM >> To: Ravi Varadhan <ravi.varad...@jhu.edu> >> Cc: 'r-help@r-project.org' <r-help@r-project.org> >> Subject: Re: optimizing with non-linear constraints >> >> Ravi Varadhan <ravi.varad...@jhu.edu> writes: >> >>> Hi Rainer, >>> It is very simple to specify the constraints (linear or nonlinear) in >>> "alabama" . They are specified in a function called `hin', where the >>> constraints are written such that they are positive. >> >> OK - I somehow missed the part that, when the values x are valid, >>> i.e. in the range as defined by the conditions, the result of hin(x) >>> that they are all positive. >> >>> Your two nonlinear constraints would be written as follows: >>> >>> hin <- function(x, LAI) { >>> h <- rep(NA, 2) >>> h[1] <- LAI^x[2] / x[3] + x[1] >>> h[2] <- 1 - x[1] - LAI^x[2] / x[3] >>> h >>> } >> >> Makes perfect sense. >> >>> >>> Please take a look at the help page. If it is still not clear, you can >>> contact me offline. >> >> Yup - I did. But I somehow missed the fact stated above. >> >> I am using constrOptim() and constrOptim.nl() for a paper and am >>> compiling a separate document which explains how to get the >>> constraints for the two functions step by step - I will make it >>> available as a blog post and a pdf. >> >> I might have further questions concerning the different fitting >>> functions and which ones are the most appropriate in my case. >> >> Thanks a lot, >> >> Rainer >> >> >>> Best, >>> Ravi >>> >>> Ravi Varadhan, Ph.D. (Biostatistics), Ph.D. (Environmental Engg) >>> Associate Professor, Department of Oncology Division of Biostatistics >>> & Bionformatics Sidney Kimmel Comprehensive Cancer Center Johns >>> Hopkins University >>> 550 N. Broadway, Suite 1111-E >>> Baltimore, MD 21205 >>> 410-502-2619 >>> >>> >>> [[alternative HTML version deleted]] >>> >> >> -- >> Rainer M. Krug >> email: Rainer<at>krugs<dot>de >> PGP: 0x0F52F982 >> > > -- > Rainer M. Krug, PhD (Conservation Ecology, SUN), MSc (Conservation Biology, > UCT), Dipl. Phys. (Germany) > > Centre of Excellence for Invasion Biology > Stellenbosch University > South Africa > > Tel : +33 - (0)9 53 10 27 44 > Cell: +33 - (0)6 85 62 59 98 > Fax : +33 - (0)9 58 10 27 44 > > Fax (D): +49 - (0)3 21 21 25 22 44 > > email: rai...@krugs.de > > Skype: RMkrug > > PGP: 0x0F52F982 > -- Rainer M. Krug email: Rainer<at>krugs<dot>de PGP: 0x0F52F982
signature.asc
Description: PGP signature
______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.