Thank you so much! I will try it! On Wed, Sep 9, 2015 at 3:27 PM, Sarah Goslee <sarah.gos...@gmail.com> wrote:
> ######################################################## > ### simulate landscapes with spatial autocorrelation ### > ### Sarah Goslee 2015-09-09 ### > ### Goslee 2006 PLANT ECOLOGY 187(2):203-212 ### > ######################################################## > > library(gstat) > > > ## parameters > abun <- 0.2 > dim1 <- 20 > dim2 <- 50 > > > ## setup > xy <- expand.grid(seq_len(dim1), seq_len(dim2)) > names(xy) <- c("x","y") > > > ## three sample simulations > > # no spatial autocorrelation > g.dummy <- gstat(formula = z~x+y, locations = ~x+y, dummy = TRUE, beta > = 0, model = vgm(1,"Nug", 0), nmax = 50) > sim <- predict(g.dummy, newdata = xy, nsim = 1) > random.landscape.000 <- predict(g.dummy, newdata = xy, nsim = 1) > random.landscape.000[,3] <- ifelse(random.landscape.000[,3] > > quantile(random.landscape.000[,3], abun), 0, 1) > > # little spatial autocorrelation > g.dummy <- gstat(formula = z~x+y, locations = ~x+y, dummy = TRUE, beta > = 0, model = vgm(1,"Exp", 5), nmax = 50) > random.landscape.005 <- predict(g.dummy, newdata = xy, nsim = 1) > random.landscape.005[,3] <- ifelse(random.landscape.005[,3] > > quantile(random.landscape.005[,3], abun), 0, 1) > > # much spatial autocorrelation > g.dummy <- gstat(formula = z~x+y, locations = ~x+y, dummy = TRUE, beta > = 0, model = vgm(1,"Exp", 250), nmax = 50) > sim <- predict(g.dummy, newdata = xy, nsim = 1) > random.landscape.250 <- predict(g.dummy, newdata = xy, nsim = 1) > random.landscape.250[,3] <- ifelse(random.landscape.250[,3] > > quantile(random.landscape.250[,3], abun), 0, 1) > > > # plot the simulated landscapes > par(mfrow=c(1,3)) > image(random.landscape.000, main="Null", xaxt="n", yaxt="n", bty="n", > xlim=c(0,dim1), ylim=c(0, dim2), col=c("lightgray", "darkgray")) > image(random.landscape.005, main="5", xaxt="n", yaxt="n", bty="n", > xlim=c(0,dim1), ylim=c(0, dim2), col=c("lightgray", "blue")) > image(random.landscape.250, main="250", sub=paste("abun =", abun), > xaxt="n", yaxt="n", bty="n", xlim=c(0,dim1), ylim=c(0, dim2), > col=c("lightgray", "darkblue")) > > ######################################################## > ### end ### > ######################################################## > > On Wed, Sep 9, 2015 at 9:27 AM, SH <empti...@gmail.com> wrote: > > Hi Sarah, > > > > Thanks for your prompt responding. The methodology in the publication is > > very similar to what I plan to do. Yes, could you be willing to share > the > > code if you don't mind? > > > > Thanks a lot again, > > > > Steve > > > > On Wed, Sep 9, 2015 at 9:11 AM, Sarah Goslee <sarah.gos...@gmail.com> > wrote: > >> > >> You can use gstat, as in: > >> > >> > https://www.researchgate.net/publication/43279659_Behavior_of_Vegetation_Sampling_Methods_in_the_Presence_of_Spatial_Autocorrelation > >> > >> If you need more detail, I can dig up the code. > >> > >> Sarah > >> > >> On Wed, Sep 9, 2015 at 8:49 AM, SH <empti...@gmail.com> wrote: > >> > Hi R-users, > >> > > >> > I hope this is not redundant questions. I tried to search similar > >> > threads > >> > relevant to my questions but could not find. Any input would be > greatly > >> > appreciated. > >> > > >> > I want to generate grid with binary values (1 or 0) in n1 by n2 (e.g., > >> > 100 > >> > by 100 or 200 by 500, etc.) given proportions of 1 and 0 values (e.g., > >> > 1, > >> > 5, or 10% of 1 from 100 by 100 grid). For clustered distributed > grid, I > >> > hope to be able to define cluster size if possible. Is there a simple > >> > way > >> > to generate random/clustered grids with 1 and 0 values with a > >> > pre-defined proportion? > >> > > >> > So far, the function "EVariogram" in the "CompRandFld" package > generates > >> > clustered grid with 1 and 0. Especially, the example #4 in the > >> > "EVariogram" function description is a kind of what I want. Below is > the > >> > slightly modified code from the original one. However, the code below > >> > can't control proportion of 1 and 0 values and complicated or I have > no > >> > idea how to do it. I believe there may be easies ways to > >> > generate random/clustered grids with proportional 1 and 0 values. > >> > > >> > Thank you very much in advance, > >> > > >> > Steve > >> > > >> > > >> > library(CompRandFld) > >> > library(RandomFields) > >> > > >> > x0 <- seq(1, 50, length.out=50) > >> > y0 <- seq(1, 60, length.out=60) > >> > d <- expand.grid(x=x0, y=y0) > >> > dim(d) > >> > head(d) > >> > x <- d$x > >> > y <- d$y > >> > # Set the model's parameters: > >> > corrmodel <- 'exponential' > >> > mean <- 0 > >> > sill <- 1 > >> > nugget <- 0 > >> > scale <- 3 > >> > set.seed(1221) > >> > # Simulation of the Binary-Gaussian random field: > >> > data <- RFsim(x, y, corrmodel="exponential", model="BinaryGauss", > >> > > param=list(mean=mean,sill=sill,scale=scale,nugget=nugget), > >> > threshold=0)$data > >> > # Empirical lorelogram estimation: > >> > fit <- EVariogram(data, x, y, numbins=20, maxdist=7, > type="lorelogram") > >> > # Results: > >> > plot(fit$centers, fit$variograms, xlab='Distance', ylab="Lorelogram", > >> > ylim=c(min(fit$variograms), max(fit$variograms)), > >> > xlim=c(0, max(fit$centers)), pch=20, main="Spatial Lorelogram") > >> > # Plotting > >> > plot(d, type='n') > >> > text(d, label=data) > >> > > >> > >> > >> -- > >> Sarah Goslee > >> http://www.functionaldiversity.org > > > > > > > > -- > Sarah Goslee > http://www.stringpage.com > http://www.sarahgoslee.com > http://www.functionaldiversity.org > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.