Hi Peter, I think your problem is that your calculations occur after the end of the loop. What you probably want is something like this:
yr_means<-mam_means<-jf_means<- jja_means<-ond_means<-rep(NA,length(prec_files)) for (i in 1:length(prec_files)) { prec_data<-read.delim(prec_files[i], sep="\t",header = TRUE) # All years assignments all_yr <- prec_data[, 2:13] # Season assignment jf <- prec_data[, 2:3] mam <- prec_data[, 4:6] jja <- prec_data[, 7:9] ond <- prec_data[, 11:13] jf_means[i] <- apply(jf, 1, mean) mam_means[i] <- apply(mam, 1, mean) jja_means[i] <- apply(jja, 1, mean) ond_means[i] <-apply(ond, 1, mean) yr_means[i] <- apply(all_yr, 1, mean) } Jim On Mon, Aug 24, 2015 at 3:01 AM, Peter Tuju <petere...@ymail.com> wrote: > Dear R users, I have fifty two (52) text files with the same dimensions (ie > 31 by 13). Three sample of such data files are attached. I want to compute > the rowMeans for each separate file for;(i) all the months > (ii) For January and February > (iii) For March, April and May > (iv) For June, July and august > (v) For October, November and December > (vi) Plot the single mass curve for each file and season ie. plot(Year, > cumsum(rowMeans([]))) > (vii) Plot Time series graphs for each file and per each season. > The code I was trying to use is given below, and I investigated it and find > that it does just for one only one file.How can I loop through all files? > I kindly need your help. > > Thanks in advance!! > > > rm(list = ls()) > setwd("/run/media/nwp-tma/+255767090047/analysis/R/R_sessions/R_sessions_prec/Rain_stn_data")# > Import text filesprec_files <- list.files(pattern="*.txt")# Reading my files > prec_files <- list.files(pattern = ".txt") > for (i in 1:length(prec_files)){ > prec_data = read.delim(prec_files[i], sep="\t", > header = TRUE) } > #prec_data <- as.numeric(prec_data[, 2:13]) > # All years assignments > all_yr <- prec_data[, 2:13] > # Season assignment > jf <- prec_data[, 2:3] > mam <- prec_data[, 4:6] > jja <- prec_data[, 7:9] > ond <- prec_data[, 11:13] > jf_means <- apply(jf, 1, mean) > mam_means <- apply(mam, 1, mean) > jja_means <- apply(jja, 1, mean) > ond_means <-apply(ond, 1, mean) > yr_mean <- apply(all_yr, 1, mean) > > > _____________ > Peter E. Tuju > Dar es Salaam > T A N Z A N I A > ---------------------- > ______________________________________________ > R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.