This is the script i am working from. library(poLCA) f <- cbind(bq70,bq72_1,bq72_2,bq72_3,bq72_4,bq72_5,bq72_6,bq72_7,bq73a_1,bq73a_2,bq73a_3,bq73a_4)~ zq88+zq89+dm_zq101_2+dm_zq101_3+dm_zq101_4+dm_zq101_5+dm_zq101_6+dm_zq101_7+dm_zq101_8+dm_zq101_9 for(i in 2:14){max_II<--1000000 min_bic<-100000 for(j in 1:1024){ res<-poLCA(f,BESDATA,nclass=i,maxiter =1000,tol = 1e-5,na.rm=FALSE,probs.start=NULL,nrep=1,verbose=TRUE,calc.se=TRUE) if(res bic<min_bic){min_bic<-resbic LCA_best_model<-res} }}
I would like to perform a latent class analysis, and also with a regression. However, the above code takes my pc a very long time to complete (intel core i5 4690k, 16gb ram). Is it typical for poLCA to take this long? Also, is there a line of code that I can use that will stop the loops for each class once global maximum likelihood has been reached? N = around 2000. Thanks! (very new to R) I use R studio by the way, in case it matters! [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.