This worked for me. It is btw. quite confusing to name your y-variable x. I think part of the problem arised from the date format.
xyplot(x + max.x ~ date, data = my.newdf, ylab = "x", panel = function(x, y, x2, ...){ panel.xyplot(x, y, type = "l") panel.loess(as.numeric(my.newdf$date), my.newdf$max.x, lty = 2) #panel.xyplot(x, y2, type = "l") }) 2015-04-29 13:09 GMT+02:00 Naresh Gurbuxani <naresh_gurbux...@hotmail.com>: > I want to plot multiple variables in xyplot, but plot loess trend for only > one of these variables. My problem is that the last command below does not > give the desired result. > Any help will be gratefully received. > Thanks,Naresh > my.df <- data.frame(date = as.numeric(as.Date("2015-01-01")) + 0:49, x = > rnorm(50)) > my.df$date <- as.Date(my.df$date, origin = as.Date("1970-01-01")) > > > library(zoo) > x <- zoo(my.df[,"x"], my.df[,"date"]) > max.x <- rollapply(x, 10, max, align = "right") > x <- merge(x, max.x) > my.newdf <- data.frame(x) > my.newdf$date <- as.Date(row.names(my.newdf)) > > > library(lattice)# This works as expected > xyplot(x + max.x ~ date, data = my.newdf, type = "l", > auto.key = list(columns = 2, points = FALSE, lines = TRUE), ylab = "x") > # This does not work > xyplot(x ~ date, data = my.newdf, y2 = max.x, ylab = "x", > panel = function(x, y, x2, ...){ > panel.xyplot(x, y, type = "l") > panel.loess(x, y, lty = 2) > panel.xyplot(x, y2, type = "l") > }) > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.