Dear all!! I estimated the following OLS model with R 2.5.6:
Output R 2.5.6 Call: lm(formula = UN ~ log(x) + time2, data = dati) Residuals: Min 1Q Median 3Q Max -5.649 -2.753 -1.015 1.225 16.199 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 7.3036294 0.6871025 10.630 <2e-16 *** log(x) -0.0028542 0.0270730 -0.105 0.916 time2 -0.0002670 0.0003823 -0.698 0.487 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 4.323 on 87 degrees of freedom Multiple R-Squared: 0.02933, Adjusted R-squared: 0.007017 F-statistic: 1.314 on 2 and 87 DF, p-value: 0.2739 is significant only the intercept After I estimated the same model with R 2.7 and this is the new output: Output R 2.7 regressione14<-lm(UN ~ log(x)+ time2,data=dati) > summary(regressione14) Call: lm(formula = UN ~ log(x) + time2, data = dati) Residuals: Min 1Q Median 3Q Max -8.825 -2.094 -0.861 2.233 12.664 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 22.724208 3.304670 6.876 8.89e-10 *** log(x) -7.117981 1.499482 -4.747 8.05e-06 *** time2 0.002051 0.000523 3.922 0.000175 *** --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 Residual standard error: 3.853 on 87 degrees of freedom Multiple R-Squared: 0.2289, Adjusted R-squared: 0.2112 F-statistic: 12.91 on 2 and 87 DF, p-value: 1.227e-05 Well, how you can see the two outputs are very differents, so i try to estimated the same model with another package and i show the output: *Variabile* *Coefficiente* *Errore Std.* *Statistica t* *p-value* const 22,7242 3,30467 6,8764 <0,00001 *** logx -7,11798 1,49948 -4,7470 <0,00001 *** time2 0,00205144 0,000523012 3,9224 0,00017 *** Media della variabile dipendente = 6,47833 Scarto quadratico medio della variabile dipendente = 4,33827 Somma dei quadrati dei residui = 1291,58 Errore standard dei residui = 3,85302 R2 = 0,228922 R2 corretto = 0,211196 Statistica F (2, 87) = 12,9145 (p-value = 1,23e-005) Log-verosimiglianza = -247,576 Criterio di informazione di Akaike = 501,152 Criterio bayesiano di Schwarz = 508,652 Criterio di Hannan-Quinn = 504,176 How you can see this package show the same output of the R 2.7 My question is where is the bug? Kind regards [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.