Hi again :)

I wrote my code here:



library("MHadaptive")baysianlog=function (param,data)



        
{  alpha=param[1]

         
gam=param[2]



        
delta=param[3]


         
x=data


           n =length(x)


         
logl=n*log(alpha)+n*log(gam)+n*log(1/delta)+(alpha-1)*sum(log(x))-sum(log(1+(gam)*x^alpha))


       
p=prior(param)


       
return(logl+p) 


}


prior=function(param)


{  
alpha=param[1]


         
gam=param[2]


        
delta=param[3]


prior_alpha=dunif(alpha,min=0,
max=1,log=TRUE)


 prior_gam=dunif(gam,0,1,log=TRUE)  


prior_delta=dunif(delta,0,1,log=TRUE)  


return(prior_alpha+ prior_gam +prior_delta) 


}


 


n=7 ; m=15


alphaB=c();gamB=c();deltaB=c()


for( i 
in 1:m){


alpha=1.8;gam=3;delta=0.8


v= runif(n)


x =delta*((1-v)^(-1/gam)-1)^(1/alpha )


mcmc_r=Metro_Hastings(li_func=baysianlog, 
pars=c(1,1,1),par_names=c('alpha','gamma','delta'),data=x
)


 


alphaB[i] =mean(mcmc_r $ trac[,1]) 


gamB[i]=
mean(mcmc_r $ trac[,2])


deltaB[i]=
mean(mcmc_r $ trac[,3])


}#end for


#####


The output is:


Error in optim(pars, li_func,
control = list(fnscale = -1), hessian = TRUE,  :


 
non-finite finite-difference value [1]


________________

the problem I think in the :

mcmc_r=Metro_Hastings(li_func=baysianlog, 
pars=c(1,1,1),par_names=c('alpha','gamma','delta'),data=x )
because  I did not write the prop_sigma because I don't know how can I 
calcalute the covariance matrix.
 
somebody told me to compute the cov without itreation then  add the reasulting 
cov matrix to metro hasting using itreation
but it also gave me  an error 
 
 Please anybody can check my code and correct it ,this is the third time I 
wrote an email  😭 
 
Thank you,
Sara
                                          
        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to