Paul Hudson <paulhudson028 <at> gmail.com> writes: > > Hello all, > > I want to fit a tweedie distribution to the data I have. > > The R packages I have been able to find assume that I want to use it as > part as of a generalized linear model. > > This is not the case, I want to directly fit the distribution to the data. > > Is there a package that allows this?
This took a little bit of fussing but it seems OK: library("tweedie") set.seed(1001) r <- rtweedie(1000,1.5,mu=2,phi=2) library("bbmle") dtweedie2 <- function(x,power,mu,phi,log=FALSE,debug=FALSE) { if (debug) cat(power,mu,phi,"\n") res <- dtweedie(y=x,xi=power,mu=mu,phi=phi) if (log) log(res) else res } m <- mle2(r~dtweedie2(power=exp(logpower), mu=exp(logmu), phi=exp(logphi)), ## don't start with logpower=0 (power=1) start=list(logpower=0.1,logmu=0,logphi=0), data=data.frame(r), method="Nelder-Mead") dtweedie2(r,xi=exp(0.1),mu=1,phi=1) In principle MASS::fitdistr could be made to work too. ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.