I'm trying to do a linear regression between the columns of matrices. In example below I want to regress column 1 of matrix xdat with column1 of ydat and do a separate regression between the column 2s of each matrix. But the output I get seems to give correct slopes but incorrect intercepts and another set of slopes with value NA. How do I do this correctly? I'm after the slope and intercept of each columns regression
> xdat <- matrix(1:6,3,2) > xdat [,1] [,2] [1,] 1 4 [2,] 2 5 [3,] 3 6 > ydat <- xdat > ydat[,1] <- xdat[,1]*3 +2 > ydat [,1] [,2] [1,] 5 4 [2,] 8 5 [3,] 11 6 > ydat[,2] <- xdat[,2]*4 - 3 > yadt Error: object "yadt" not found > ydat [,1] [,2] [1,] 5 13 [2,] 8 17 [3,] 11 21 > lrg <- lm(y~x) Error in eval(expr, envir, enclos) : object "y" not found > lrg <- lm(ydat~xdat) > lrg Call: lm(formula = ydat ~ xdat) Coefficients: [,1] [,2] (Intercept) 2 9 xdat1 3 4 xdat2 NA NA -- View this message in context: http://www.nabble.com/Using-lm-with-a-matrix--tp17708207p17708207.html Sent from the R help mailing list archive at Nabble.com. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.