Hi all, I am trying to analyse bird data to investigate carry-over effect using structural equation model. I failed to run properly a big model with several latent variables with both L -> M block and M -> L block. Rather than trying again and again with the huge model, I am now looking to a subset of the model.
Due to previous error message (singularity in the matrix), I scaled all the variables. Here is a subset of the data: > dataE[1:15,] Fledgling_date_t Total_Output_t Breed_nb.clutch_t.1 Breed_Egg_t.1 Breed_Total_Output_t.1 1 1.09397971 1.19657515 0.4696909 -0.69784742 1.2558119 2 0.62564592 0.37786584 0.4696909 0.02046473 -0.1762543 3 1.51548013 1.19657515 -1.0568046 0.89840181 -1.8947338 4 0.15731212 1.60592981 -1.0568046 -1.49597204 -1.3219073 5 0.48514578 -0.44084348 0.4696909 -0.69784742 0.6829854 6 1.93698054 -0.03148882 0.4696909 0.02046473 0.9693987 7 -1.66918968 -0.85019813 -1.0568046 0.97821428 -0.4626676 8 0.01681198 0.78722049 0.4696909 -0.53822250 1.2558119 9 0.34464564 1.60592981 -1.0568046 -0.13916019 -1.8947338 10 1.23447985 1.19657515 -1.0568046 1.93596382 -0.7490808 11 -0.12368816 -0.85019813 0.4696909 1.93596382 0.1101589 12 -0.17052154 0.78722049 -1.0568046 -0.45841004 -0.1762543 13 -1.52868954 -0.44084348 -1.0568046 1.37727658 -0.4626676 14 0.15731212 -1.25955279 -1.0568046 1.61671397 -0.4626676 15 -0.17052154 -0.85019813 -1.0568046 0.97821428 -1.6083205 Library(sem) # the covariance matrix for scaled data S.covE <- readMoments(diag=T,names=c("Fledgling_date_t","Total_Output_t","Breed_nb.clutch_t.1","Breed_Egg_t.1","Breed_Total_Output_t.1")) 1.0000000 0.350170246 1.0000000 -0.075832501 -0.099929893 1.0000000 -0.15439341 -0.091334987 -0.131698418 1.0000000 -0.191457491 -0.227843749 0.510666663 -0.386711653 1.0000000 # specification of the model - I also provided a diagram of the model in the attached PDF. modelE <- specifyModel() EndBreed -> Fledgling_date_t, lambda1, NA EndBreed -> Total_Output_t, lambda1, NA Fledgling_date_t <-> Fledgling_date_t, delta1, NA Total_Output_t <-> Total_Output_t, delta2, NA Fledgling_date_t <-> Total_Output_t, theta1, NA EndBreed -> BreedSucc, gamma1, NA EndBreed <-> EndBreed, phi1, NA BreedSucc -> Breed_Egg_t.1, lamdae, NA BreedSucc -> Breed_Total_Output_t.1, lamdae, NA BreedSucc -> Breed_nb.clutch_t.1, lamdae, NA Breed_nb.clutch_t.1 <-> Breed_nb.clutch_t.1, eps1, NA Breed_Egg_t.1 <-> Breed_Egg_t.1, eps2, NA Breed_Total_Output_t.1 <-> Breed_Total_Output_t.1, eps3, NA Breed_nb.clutch_t.1 <-> Breed_Egg_t.1, psie12, NA Breed_Egg_t.1 <-> Breed_Total_Output_t.1, psie23, NA Breed_nb.clutch_t.1 <-> Breed_Total_Output_t.1, psie13, NA BreedSucc <-> BreedSucc, zetae, NA # estimation of the model semE <- sem(modelE,S.covE,N=39,debug=T) To this point, everything seemed fine, the parameter were estimated after 129 iterations with all data. However, the problem arised when I asked for a summary of the model: > summary(semE) Error in summary.objectiveML(semE) : coefficient covariances cannot be computed But the model seemed to work well : > semE Model Chisquare = 0.9876903 Df = 1 lambda1 delta1 delta2 theta1 gamma1 phi1 lamdae eps1 eps2 0.8251654 0.3302009 0.3418300 -0.3138143 0.4122545 0.9752364 -0.4671335 0.8020365 0.7857964 eps3 psie12 psie23 psie13 zetae 0.7461566 -0.3377820 -0.6207350 0.2847632 0.8828395 Iterations = 75 > semE$convergence [1] TRUE I also tried with using SpecifyEquations() instead of SpecifyModel() : # specification of the model using specifyEquations modelEe <- specifyEquations() Fledgling_date_t = lambda1*EndBreed Total_Output_t = lambda1*EndBreed c(Fledgling_date_t,Total_Output_t) = theta1 Breed_nb.clutch_t.1 = lamdae*BreedSucc Breed_Egg_t.1 = lamdae*BreedSucc Breed_Total_Output_t.1 = lamdae*BreedSucc c(Breed_nb.clutch_t.1,Breed_Egg_t.1) = psi12 c(Breed_nb.clutch_t.1,Breed_Total_Output_t.1) = psi13 c(Breed_Egg_t.1,Breed_Total_Output_t.1) = psi23 BreedSucc = gamma1*EndBreed v(EndBreed) = phi1 v(BreedSucc) = zeta1 v(Fledgling_date_t) = delta1 v(Total_Output_t) = delta2 v(Breed_nb.clutch_t.1) = eps1 v(Breed_Egg_t.1) = eps2 v(Breed_Total_Output_t.1) = eps3 # estimation of the model semEe <- sem(modelEe,covE,N=39,debug=T) > semEe Model Chisquare = 0.9876903 Df = 1 lambda1 theta1 lamdae psi12 psi13 psi23 gamma1 phi1 zeta1 0.8220182 -0.3346606 0.5034442 -0.3550646 0.2674806 -0.6380177 -0.3694630 1.0135693 0.8326144 delta1 delta2 eps1 eps2 eps3 0.3093554 0.3209828 0.7847537 0.7685137 0.7288741 Iterations = 79 > summary(semEe) Error in summary.objectiveML(semEe) : coefficient covariances cannot be computed I also tried to set one loading to 1 instead of setting equality among loadings, but the results were the same. Could it be possible that the low number of data (N=39 but no NA inside) may be the cause of the error? In the model, the df is 1, thus all the parameters should be identifiable. Hoping you will have enough information to help a bit. Thanks in advance. Cheers, Guillaume -- Guillaume SOUCHAY, Ph.D Post-doctoral fellow in population dynamics --- "There is no true model" Anderson & Burhnam 1999 --- ᐧ ______________________________________________ R-help@r-project.org mailing list -- To UNSUBSCRIBE and more, see https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.