Kristi: Power is a prespecified property of the design, not a post hoc property of the analysis (SAS procedures notwithstanding). So you're a day late and a dollar short.
I suggest you consult with a local statistician about such matters, as you appear to be out of your depth. Cheers, Bert Bert Gunter Genentech Nonclinical Biostatistics (650) 467-7374 "Data is not information. Information is not knowledge. And knowledge is certainly not wisdom." Clifford Stoll On Sat, Nov 8, 2014 at 3:49 AM, Kristi Glover <kristi.glo...@hotmail.com> wrote: > Hi R Users, > I was trying to determine whether I have enough samples and power in my > analysis. Would you mind to provide some hints?. I found a several packages > for power analysis but did not find any example data. I have two sites and > each site has 4 groups. I wanted to test whether there was an effect of > restoration activities and sites on the observed value. I used a two way > factorial ANOVA and now I wanted to test the power of the analysis (whether > the sample sizes are enough for the analysis? what are the alpha and power in > the analysis using this data set? if it is not enough, how much samples > should be collected for alpha 0.05 and power=0.8 and 0.9 for the analysis > (two way factorial analysis). > The example data:data<-structure(list(observedValue = c(0.08, 0.53, 0.14, > 0.66, 0.37, 0.88, 0.84, 0.46, 0.3, 0.61, 0.75, 0.82, 0.67, 0.37, 0.95, 0.73, > 0.74, 0.69, 0.06, 0.97, 0.97, 0.07, 0.75, 0.68, 0.53, 0.72, 0.34, 0.12, 0.49, > 0.77, 0.45, 0.07, 0.97, 0.34, 0.68, 0.48, 0.65, 0.7, 0.57, 0.66, 0.4, 0.29, > 0.88, 0.36, 0.68, 0.32, 0.8, 0, 0.11, 0.48, 0.85, 0.94, 0.12, 0.12, 0, 0.89, > 0.66, 0.2, 0.57, 0.09, 0.27, 0.81, 0.53, 0.09, 0.5, 0.41, 0.89, 0.47, 0.39, > 0.85, 0.71, 0.89, 0.01, 0.71, 0.42, 0.72, 0.62, 0.3, 0.56, 0.99, 0.97, 0.03, > 0.09, 0.27, 0.27, 0.94, 0.23, 0.97, 0.81, 0.95), condition = structure(c(1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, > 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, > 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, > 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("good",! "! > medium", "poor", "verygood"), class = "factor"), areas = structure(c(1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, > 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, > 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("Restored", > "unrestored"), class = "factor")), .Names = c("observedValue", "condition", > "areas"), class = "data.frame", row.names = c(NA, -90L)) > test= aov(observedValue~condition*areas,data=data)summary(test) > power of the analysis? > thanks for your help. > Sincerely, KG > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.