What you are asking is a bad idea on multiple levels. You will grossly over-estimate the area under the ROC curve. Consider the 1-NN model: you will have perfect predictions every time.
To do this, you will need to run train again and modify the index and indexOut objects: library(caret) set.seed(1) dat <- twoClassSim(200) set.seed(2) folds <- createFolds(dat$Class, returnTrain = TRUE) Control <- trainControl(method="cv", summaryFunction=twoClassSummary, classProb=T, index = folds, indexOut = folds) tGrid=data.frame(k=1:100) set.seed(3) a_bad_idea <- train(Class ~ ., data=dat, method = "knn", tuneGrid=tGrid, trControl=Control, metric = "ROC") Max On Sat, Oct 11, 2014 at 7:58 PM, Iván Vallés Pérez < ivanvallespe...@gmail.com> wrote: > Hello, > > I am using caret package in order to train a K-Nearest Neigbors algorithm. > For this, I am running this code: > > Control <- trainControl(method="cv", summaryFunction=twoClassSummary, > classProb=T) > > tGrid=data.frame(k=1:100) > > trainingInfo <- train(Formula, data=trainData, method = > "knn",tuneGrid=tGrid, > trControl=Control, metric = "ROC") > As you can see, I am interested in obtain the AUC parameter of the ROC. > This code works good but returns the testing error (which the algorithm > uses for tuning the k parameter of the model) as the mean of the error of > the CrossValidation folds. I am interested in return, in addition of the > testing error, the trainingerror (the mean across each fold of the error > obtained with the training data). ¿How can I do it? > > Thank you > [[alternative HTML version deleted]] > > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide > http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > > [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.