Hi all r-mailling listers:

Can anyone explain the theory (or the formula) about computing Sum Sq
(color highligh below) related to regression items?  The link of Wikipedia (
http://en.wikipedia.org/wiki/Partition_of_sums_of_squares) gives an
introduction on how to calculate the total, model, and regression sum of
squares. Is it similar to the Sum Sq computation? Is the regression sum of
squares equal to (0.000437+ 0.002545+ 0.060984+ 0.062330+ 0.060480)?

Any suggestion will be greatly appreciated.

Thank you!

David

TraingData<-data.frame(
x1=c(3.532,2.868,2.868,3.532,2.868,2.536,3.864),
x2=c(1.992,1.992,1.328,1.328,1.328,1.66,1.66),
y=c(9.040330254,8.900894412,8.701929163,9.057944749,8.701929163,8.74317832,9.10859913)
)
lm.sol<-lm(y~1+x1+x2+I(x1^2)+I(x2^2)+I(x1*x2),data=TraingData)
anova(lm.sol)

Analysis of Variance Table

Response: y
                Df     *Sum Sq*     Mean       Sq F    value Pr(>F)
x1              1    0.000437  0.000437    0.1055    0.8001
x2              1    0.002545  0.002545    0.6141    0.5768
I(x1^2)        1    0.060984  0.060984   14.7162    0.1623
I(x2^2)        1    0.062330  0.062330   15.0409    0.1607
I(x1 * x2)    1    0.060480  0.060480   14.5945    0.1630
Residuals   1    0.004144  0.004144

        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to