Good morning, for my data I've perform a Quasi-Poisson distribution and now I want to perform a Double Poisson distribution
Could someone tell me if it is possible and how do it in R I attach below my data Tanks for help, best regards Roberta Marino > intdata<- read.table("dati-traffico-guide.dat") > intdata V1 V2 V3 V4 V5 1 1 4 4 21.193913 3.053714 2 2 4 2 8.400438 2.128284 3 3 4 0 20.443000 3.017641 4 4 3 3 14.434567 2.669626 5 5 3 5 28.549402 3.351636 6 6 5 2 8.400438 2.128284 7 7 4 1 3.329605 1.202854 8 8 3 4 21.193913 3.053714 9 9 4 3 14.434567 2.669626 10 10 5 1 3.329605 1.202854 11 11 4 3 14.434567 2.669626 12 12 5 1 3.329605 1.202854 13 13 4 1 3.329605 1.202854 14 14 3 3 14.434567 2.669626 15 15 3 2 8.400438 2.128284 16 16 4 4 21.193913 3.053714 17 17 5 5 28.549402 3.351636 18 18 5 1 3.329605 1.202854 19 19 4 2 8.400438 2.128284 20 20 3 6 36.417738 3.595056 21 21 5 3 14.434567 2.669626 22 22 4 4 21.193913 3.053714 23 23 4 3 14.434567 2.669626 24 24 4 6 36.417738 3.595056 25 25 4 5 28.549402 3.351636 26 26 5 1 3.329605 1.202854 27 27 4 0 15.678000 2.752258 28 28 4 3 14.434567 2.669626 29 29 4 2 8.400438 2.128284 30 30 4 1 3.329605 1.202854 31 31 4 7 44.739851 3.800865 32 32 4 6 36.417738 3.595056 33 33 5 5 28.549402 3.351636 34 34 5 3 14.434567 2.669626 35 35 4 3 14.434567 2.669626 36 36 4 2 8.400438 2.128284 37 37 5 4 21.193913 3.053714 38 38 5 4 21.193913 3.053714 39 39 4 5 28.549402 3.351636 40 40 4 3 14.434567 2.669626 41 41 4 2 8.400438 2.128284 42 42 4 6 36.417738 3.595056 43 43 5 2 8.400438 2.128284 44 44 3 2 8.400438 2.128284 45 45 3 2 8.400438 2.128284 46 46 4 1 3.329605 1.202854 47 47 3 3 14.434567 2.669626 48 48 6 0 40.723000 3.706793 49 49 5 7 44.739851 3.800865 50 50 5 3 14.434567 2.669626 51 51 4 3 14.434567 2.669626 52 52 5 5 28.549402 3.351636 53 53 4 1 3.329605 1.202854 54 54 3 3 14.434567 2.669626 55 55 4 4 21.193913 3.053714 56 56 3 6 36.417738 3.595056 57 57 4 3 14.434567 2.669626 58 58 4 7 44.739851 3.800865 59 59 4 0 46.851000 3.846972 60 60 3 1 3.329605 1.202854 61 61 4 7 44.739851 3.800865 62 62 3 9 62.577007 4.136398 63 63 4 3 14.434567 2.669626 64 64 4 0 13.210000 2.580974 65 65 3 1 3.329605 1.202854 66 66 4 1 3.329605 1.202854 67 67 4 3 14.434567 2.669626 68 68 4 4 21.193913 3.053714 69 69 4 3 14.434567 2.669626 70 70 3 3 14.434567 2.669626 71 71 4 3 14.434567 2.669626 72 72 3 4 21.193913 3.053714 73 73 4 3 14.434567 2.669626 74 74 5 4 21.193913 3.053714 75 75 3 5 28.549402 3.351636 76 76 4 5 28.549402 3.351636 77 77 3 5 28.549402 3.351636 78 78 3 6 36.417738 3.595056 79 79 3 3 14.434567 2.669626 80 80 5 7 44.739851 3.800865 81 81 3 1 3.329605 1.202854 82 82 3 0 5.184000 1.645577 83 83 3 0 7.742000 2.046660 84 84 6 2 8.400438 2.128284 85 85 5 0 80.941000 4.393720 86 86 3 14 112.876553 4.726295 87 87 4 17 146.278901 4.985515 88 88 4 7 44.739851 3.800865 89 89 5 3 14.434567 2.669626 90 90 5 3 14.434567 2.669626 91 91 4 4 21.193913 3.053714 92 92 3 5 28.549402 3.351636 93 93 4 2 8.400438 2.128284 94 94 3 7 44.739851 3.800865 95 95 4 8 53.471253 3.979144 96 96 4 2 8.400438 2.128284 97 97 3 5 28.549402 3.351636 98 98 6 1 3.329605 1.202854 99 99 5 3 14.434567 2.669626 100 100 4 7 44.739851 3.800865 101 101 4 8 53.471253 3.979144 102 102 3 5 28.549402 3.351636 103 103 4 3 14.434567 2.669626 104 104 5 3 14.434567 2.669626 105 105 3 5 28.549402 3.351636 106 106 4 9 62.577007 4.136398 107 107 4 5 28.549402 3.351636 108 108 4 4 21.193913 3.053714 109 109 4 7 44.739851 3.800865 110 110 4 9 62.577007 4.136398 111 111 3 1 3.329605 1.202854 112 112 3 1 3.329605 1.202854 113 113 4 2 8.400438 2.128284 114 114 4 2 8.400438 2.128284 115 115 4 4 21.193913 3.053714 116 116 3 4 21.193913 3.053714 117 117 3 3 14.434567 2.669626 118 118 5 2 8.400438 2.128284 119 119 4 4 21.193913 3.053714 120 120 3 1 3.329605 1.202854 121 121 4 3 14.434567 2.669626 122 122 4 5 28.549402 3.351636 123 123 4 5 28.549402 3.351636 124 124 4 4 21.193913 3.053714 125 125 3 4 21.193913 3.053714 126 126 3 3 14.434567 2.669626 127 127 4 2 8.400438 2.128284 128 128 5 0 6.436000 1.861907 129 129 5 1 3.329605 1.202854 130 130 5 1 3.329605 1.202854 131 131 5 1 3.329605 1.202854 132 132 4 3 14.434567 2.669626 133 133 3 1 3.329605 1.202854 134 134 3 3 14.434567 2.669626 135 135 3 3 14.434567 2.669626 136 136 4 1 3.329605 1.202854 137 137 4 3 14.434567 2.669626 138 138 4 2 8.400438 2.128284 139 139 6 3 14.434567 2.669626 140 140 4 5 28.549402 3.351636 141 141 4 6 36.417738 3.595056 142 142 4 2 8.400438 2.128284 143 143 4 4 21.193913 3.053714 144 144 3 4 21.193913 3.053714 145 145 4 7 44.739851 3.800865 146 146 4 0 30.794000 3.427320 147 147 4 5 28.549402 3.351636 148 148 4 6 36.417738 3.595056 149 149 4 6 36.417738 3.595056 150 150 3 0 38.973000 3.662869 151 151 4 14 112.876553 4.726295 152 152 3 2 8.400438 2.128284 153 153 3 3 14.434567 2.669626 154 154 6 5 28.549402 3.351636 155 155 4 0 23.111000 3.140309 156 156 3 1 3.329605 1.202854 > glmpois <- summary(glm(intdata[,3]~intdata[,5], family=quasipoisson (link=log),na.action=na.exclude)) > glmpois Call: glm(formula = intdata[, 3] ~ intdata[, 5], family = quasipoisson(link = log), na.action = na.exclude) Deviance Residuals: Min 1Q Median 3Q Max -4.3819 0.0868 0.1331 0.2151 0.5854 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -0.90085 0.10679 -8.436 2.23e-14 *** intdata[, 5] 0.71981 0.03184 22.604 < 2e-16 *** --- Signif. codes: 0 â***â 0.001 â**â 0.01 â*â 0.05 â.â 0.1 â â 1 (Dispersion parameter for quasipoisson family taken to be 0.3594917) Null deviance: 300.33 on 155 degrees of freedom Residual deviance: 105.23 on 154 degrees of freedom AIC: NA Number of Fisher Scoring iterations: 4 [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.