Hi all ,
I was doing k-mean clustering through which i could find out each and every clusters and the contents around each cluster centroid like below :- x<-read.csv("normalizedata.csv", header = TRUE) #To read the dataset km<- kmeans(x, 3, 150) print(km) <<<---- in this I could get every clusters and centroids . km$cluster <<----- It gave me the clusters which comes up during clustering like [1] 3 3 1 2 3 2 1 2 1 3 2 1 3 1 1 1 3 2 1 1 1 1 3 1 1 2 2 2 1 3 3 1 3 3 2 2 2 [38] 3 1 3 1 3 3 1 1 1 3 1 1 2 1 3 3 3 3 3 3 3 3 3 3 1 3 2 3 2 2 3 3 3 3 2 3 2 [75] 1 2 2 1 1 3 3 1 3 1 1 1 1 3 3 2 1 3 3 3 1 3 1 1 1 1 1 2 1 3 1 1 1 2 1 3 3 [112] 1 3 1 2 1 1 1 1 1 1 1 2 2 1 3 1 2 3 1 1 3 2 1 1 1 2 1 3 2 1 3 1 1 1 3 2 1 [149] 3 2 3 3 3 3 1 2 1 1 1 1 1 1 3 2 2 2 1 1 1 3 3 1 1 3 2 1 3 1 1 1 1 1 2 1 1 [186] 3 1 2 1 3 2 3 2 1 2 1 2 3 1 1 1 2 3 2 1 1 2 3 3 1 2 2 1 3 1 1 2 3 3 1 1 3 [223] 3 1 1 3 3 3 2 2 1 3 3 3 2 2 1 2 3 1 1 2 1 1 1 1 1 3 1 3 2 1 1 3 1 1 2 2 3 [260] 1 3 3 3 1 1 2 1 3 1 3 1 2 1 1 1 3 3 2 3 1 1 1 2 1 3 3 1 3 3 1 1 2 1 2 3 3 But in case of SOM clustering when i had tried like :- require(kohonen) require (som) #To load Kohonen Package x<-read.csv("normalizedata.csv",header=TRUE) x.sc <- scale(x) #To scale set.seed(7) xx.som<- SOM(data = x.sc, grid = somgrid(1, 3, "hexagonal")) #som function print(xx.som) I got :- $codes hrefCount Number.of.times.Visited Total.time.Spent [1,] -0.008926424 0.01642686 -0.01059301 [2,] -0.008926424 0.01642686 -0.01059301 [3,] -0.023231402 -0.06730921 -0.02705149 I hope this are the centroids , I need the cluster results like kmeans , how to achieve it , can any one helps . THanks ASHIS [[alternative HTML version deleted]] ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.