Hi Rui, Many thanks for your response. I have tried to adapt your code to my problem, but there is still a mistake <text>
LinearModel.1 <- lm(GDP.per.head ~ Competitivness.score + Quality.score, data=Dataset) B <- 500 # number of bootstrap samples result <- array(dim = c(22, 3, B)) for(i in 1:B) {s <- sample(nrow(Dataset), 22, replace = TRUE) LinearModel.1 <- lm(GDP.per.head ~ Competitivness.score + Quality.score, data = Dataset[s, ]) result[,,i] <- predict(LinearModel.1, interval = "prediction") } Thanks for your help. Really appreciate. Le Jeudi 15 mai 2014 13h01, Rui Barradas <ruipbarra...@sapo.pt> a écrit : Hello, Try to follow the example below and see if you can adapt it to your needs. Since you don't provide us with a dataset example, I start by making up some. # make up some data n <- 22 set.seed(8873) dat <- data.frame(x1 = rnorm(n), x2 = rnorm(n)) dat$y <- x1 + x2 + rnorm(n) B <- 100 # number of bootstrap samples result <- array(dim = c(n, 3, B), dimnames = list(NULL, c("fit", "upr", "lwr"), NULL)) for(i in 1:B){ s <- sample(nrow(dat), n, replace = TRUE) lm.tmp <- lm(y ~ x1 + x2, data = dat[s, ]) result[,,i] <- predict(lm.tmp, interval = "prediction") } Then you can do whatever you want with 'result', including computing the min and max values. Hope this helps, Rui Barradas Em 15-05-2014 10:37, varin sacha escreveu: > Dear experts, >> >> >> I have done a multiple linear regression on a small sample size (n=22). >> I have computed the prediction intervals (not the confidence intervals). >> >> >> Now I am trying to bootstrap the prediction intervals. >> >> >> I didn't find any package doing that. >> So I decide to create my own R function, but it doesn't work ! >> >> >> Here are my R codes : >> >> >> LinearModel.1 <- lm(GDP.per.head ~ Competitivness.score +Quality.score, >> data=Dataset) >> summary(LinearModel.1) >> predict(LinearModel.1, interval = "prediction") >> >> >> HERE IS MY R FUNCTION WHERE I HAVE TRIED TO BOOTSTRAP THE PREDICTION >> INTERVALS >> >> >> pred.min<-rep(nrow(Dataset), na.rm=F) >> pred.max<-rep(nrow(Dataset), na.rm=F) >> for(i in 1:n) >> {s<-sample(1:nrow(Dataset),size=22) >> reg<-lm(GDP.per.head ~ Competitivness.score + Quality.score,data=Dataset[s]) >> pred.min<-pmin(reg,pred.min) >> pred.max<-pmax(reg,pred.max)} >> >> >> Thanks for your precious help. >> >> > [[alternative HTML version deleted]] > > > > ______________________________________________ > R-help@r-project.org mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. > [[alternative HTML version deleted]]
______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.