On Mon, May 5, 2014 at 9:43 AM, Niloofar.Javanrouh <javanrou...@yahoo.com> wrote: > > > hello, > i want to differentiate of L with respect to b > when: > > L= k*ln (k/(k+mu)) + sum(y) * ln (1-(k/mu+k)) #(negative binomial ln > likelihood) > and > ln(mu/(mu+k)) = a+bx #link function > > how can i do it in R?
Try this. First we solve for 'mu' in terms of the other variables using the link equation: > library(Ryacas) > k <- Sym("k") > mu <- Sym("mu") > y <- Sym("y") > L <- Sym("L") > a <- Sym("a") > b <- Sym("b") > x <- Sym("x") > sumy <- Sym("sumy") > Solve(log(mu/(mu+k)) == a+b*x, "mu") expression(list(mu == k * exp(a + b * x)/(1 - exp(a + b * x)))) > Now in 'k*log(k/(k+mu)) + sumy * log(1-(k/mu+k))' substitute 'k * exp(a + b * x)/(1 - exp(a + b * x)))' for 'mu' using 'Subst' and take the derivative with respect to 'a' using 'deriv': > s <- Subst(k*log(k/(k+mu)) + sumy * log(1-(k/mu+k)), mu, + k * exp(a + b * x)/(1 - exp(a + b * x))) > deriv(s, a) expression(sumy * (k * ((1 - exp(a + b * x)) * (k * exp(a + b * x)) + k * exp(a + b * x)^2))/((1 - exp(a + b * x))^2 * (k * exp(a + b * x)/(1 - exp(a + b * x)))^2 * (1 - (k * (1 - exp(a + b * x))/(k * exp(a + b * x)) + k))) - k * ((k + k * exp(a + b * x)/(1 - exp(a + b * x))) * (k * ((1 - exp(a + b * x)) * (k * exp(a + b * x)) + k * exp(a + b * x)^2)))/((1 - exp(a + b * x))^2 * ((k + k * exp(a + b * x)/(1 - exp(a + b * x)))^2 * k))) ______________________________________________ R-help@r-project.org mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.