Thanks.  I used the most current version of lme4 that is why I was a bit 
concerned.  My data seems appropriate and with lme4 working last week on a very 
similar data set, I was left a bit confused.  Since I only starting 
implementing this technique, does anybody have some pointers on what I should 
look for that may potentially cause some issues?  

> 
> -----Oorspronkelijk bericht-----
> Van: r-help-boun...@r-project.org [mailto:r-help-boun...@r-project.org] 
> Namens Craig O'Connell
> Verzonden: maandag 28 april 2014 3:20
> Aan: r-help@r-project.org
> Onderwerp: [R] lme4 Error Help: “maxstephalfit…pwrssUpdate”
> 
> I am using a mixed model to assess the effects of various variables (i.e. 
> treatment, density, visibility) on bee behavior (e.g., avoidance frequency - 
> total avoidances per total visits; feeding frequency, and mating frequency).  
> Bee individuals is my random factor (n=63 different bees), whereas treatment 
> type, animal density, and air visibility are my fixed factors.
> However, when I run my models, I immediately get an error that I cannot fix.  
> Here is a sample of my data:
> Bee   Treatment    Visits    Avoid   Feeding    Mating    Density   Visibility
> 
> 1   C   5   0   5   0      5        4
> 2   C   4   0   3   0      5        4
> 3   C   3   0   3   0      5        4
> ...
> 63
> 
> 1   PC  2   0   1   1      5        4
> 2   PC  3   0   0   3      5        4
> 3   PC  1   0   0   0      5        4
> ...
> 63
> 
> 1   M   5   0   1   3      5        4
> 2   M   3   2   0   0      5        4
> 3   M   2   0   0   2      5        4
> ...
> 63One I create my .txt file, I being my coding in R by first loading lme4.  
> After that, my coding starts off as follows:
> barrierdat = read.table("GLMMROW.txt", header=TRUE) barrierdat 
> barrierdat$Visibility = as.factor(barrierdat$Visibility);
> barrierdat$Density    = as.factor(barrierdat$Density);
> 
> p01.glmer = glmer(Avoidance~offset(log(Visits))+(1|Bee),            
> family=poisson,
>                   data=egghead);  # null model; p02.glmer = 
> glmer(Avoidance~offset(log(Visits))+(1|Bee)+Treatment,  family=poisson,
>                   data=egghead);
> p03.glmer = glmer(Avoidance~offset(log(Visits))+(1|Bee)+Visibility, 
> family=poisson,
>                   data=egghead);
> p04.glmer = glmer(Avoidance~offset(log(Visits))+(1|Bee)+Density,    
> family=poisson,
>                   data=egghead);However, upon immediately running my models 
> (e.g. p01.glmer), I receive the error:
> Error: (maxstephalfit) PIRLS step-halvings failed to reduce deviance in 
> pwrssUpdate
> 
> Does anybody know what the issue is?  I ran similar data several weeks ago 
> and had no issues.  Any Suggestions on how to proceed?
> 
>         [[alternative HTML version deleted]]
> 
> ______________________________________________
> R-help@r-project.org mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.
> * * * * * * * * * * * * * D I S C L A I M E R * * * * * * * * * * * * *
> Dit bericht en eventuele bijlagen geven enkel de visie van de schrijver weer 
> en binden het INBO onder geen enkel beding, zolang dit bericht niet bevestigd 
> is door een geldig ondertekend document.
> The views expressed in this message and any annex are purely those of the 
> writer and may not be regarded as stating an official position of INBO, as 
> long as the message is not confirmed by a duly signed document.

                                          
        [[alternative HTML version deleted]]

______________________________________________
R-help@r-project.org mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to